Skip to main content
Log in

Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Temporal and spatial changes in parameters of fast chlorophyll fluorescence kinetics (ground fluorescence, Fo and maximal fluorescence, Fm) and red/NIR reflectance were assessed with a Pulse-Amplitude-Modulated (PAM)-Imaging system on a daily basis over a period of 2 weeks following inoculation of wheat leaves with powdery mildew and leaf rust. The early detection of these infections by means of fluorescence imaging was possible 2–3 days before visual symptoms or significant changes in normalised-differenced-vegetation index (NDVI) became apparent. The initial infection of both fungi caused an increase in Fo and decrease in photochemical efficiency (Fv/Fm, Fv/Fo). The appearance and development of fungal pustules was accompanied by reduction in Fo and Fm. This resulted mainly from lower absorption of fluorescence exciting light by the leaf mesophyll due to the shielding effect of fungal mycelium, and to lesser extent from the chlorophyll breakdown underneath pustules. Among the evaluated fluorescence parameters, Fv/Fo displayed the most pronounced response to both kinds of infection. Mildew infection influenced chlorophyll fluorescence neither in the direct vicinity of mycelium nor in the apparently healthy leaf regions. Rust infected plants, in contrast, displayed significantly reduced photochemical efficiency Fv/Fm and Fv/Fo in chlorotic tissue around pustules. The same, but less pronounced tendency was found in the apparently healthy regions of rust infected leaves in the last days of the experiment. Dark adaptation of leaves proved to be necessary for accurate detection of both pathogen infections by means of fluorescence imaging. Additional experiments are needed to estimate the potential of this technique for remote sensing under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babani, F., & Lichtenthaler, H. K. (1996). Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. Journal of Plant Physiology, 148, 555–566.

    CAS  Google Scholar 

  • Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve production strategies: An examination of future possibilities. Journal of Experimental Botany, 55, 1607–1621. doi:10.1093/jxb/erh196.

    Article  PubMed  CAS  Google Scholar 

  • Bassanezi, R. B., Amorim, L., Bergamin Filho, F., & Berger, R. D. (2002). Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. Journal of Phytopathology, 150, 37–47. doi:10.1046/j.1439-0434.2002.00714.x.

    Article  CAS  Google Scholar 

  • Bodria, L., Fiala, M., Naldi, E., & Oberti, R. (2002). Chlorophyll fluorescence sensing for early detection of crop’s diseases symptoms. In Proceedings 2002 International ASAE Conference and XV CIGR World Congress/ASAE-CIGR. ASAE-CIGR, 2002, Paper No. 021114 (pp. 1–15).

  • Carver, T. L. W., Ingerson, S. M., & Thomas, B. J. (1996). Influences of host surface features on development of Erysiphe graminis and Erysiphe pisi. In G. Kersteins (Ed.), Plant cuticles—an integrated functional approach (pp. 255–266). Oxford, UK: BIOS Scientific Publishers.

    Google Scholar 

  • Chaerle, L., Hagenbeek, D., De Bruyne, R., Valcke, R., & Van Der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant–pathogen interactions at an early stage. Plant and Cell Physiology, 45(7), 887–896. doi:10.1093/pcp/pch097.

    Article  PubMed  CAS  Google Scholar 

  • Gitelson, A. A., Buschmann, C., & Lichtenthaler, H. K. (1998). Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. Journal of Plant Physiology, 152, 283–296.

    CAS  Google Scholar 

  • Govindjee, (2004). Chlorophyll a fluorescence: A bit of basics and history. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll fluorescence: A signature of photosynthesis (pp. 1–42). Dordrecht, NL: Springer.

    Google Scholar 

  • Franke, J., Menz, G., Oerke, E.-C., & Rascher, U. (2005). Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants. In M. Owe & G. D’Urso (Eds.), Remote sensing for agriculture, ecosystems, and hydrology VII: Proceedings of the SPIE, Vol. 5978(50) (pp. 1–11).

  • Lichtenthaler, H. K., & Babani, F. (2004). Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll fluorescence: A signature of photosynthesis (pp. 713–736). Dordrecht, NL: Springer.

    Google Scholar 

  • Lichtenthaler, H. K., Buschmann, C., & Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43, 379–393. doi:10.1007/s11099-005-0062-6.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll-fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19, 29–85.

    Google Scholar 

  • Limbrunner, B., & Maidl, F.-X. (2007). Non-contact measurement of the actual nitrogen status of winter wheat canopies by laser-induced chlorophyll fluorescence. In J. V. Stafford (Ed.), Precision agriculture ‘07: Proceedings of the 6th European Conference on Precision Agriculture (pp. 173–179). Netherlands: Wageningen Academic Publishers.

  • Lorenzen, B., & Jensen, A. (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sensing of Environment, 27, 201–209. doi:10.1016/0034-4257(89)90018-7.

    Article  Google Scholar 

  • Moll, S., Serrano, P., & Boyle, C. (1995). In vivo chlorophyll fluorescence in rust-infected bean plants. Angewandte Botanik, 69, 163–168.

    CAS  Google Scholar 

  • Nicolas, H. (2004). Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Protection, 23, 853–863. doi:10.1016/j.cropro.2004.01.008.

    Article  Google Scholar 

  • Scholes, J. D., & Farrar, J. F. (1986). Increased rates of photosynthesis in localised regions of a barley leaf infected with brown rust. New Phytologist, 104, 601–612. doi:10.1111/j.1469-8137.1986.tb00660.x.

    Article  Google Scholar 

  • Scholes, J. D., & Rolfe, S. A. (1996). Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): Quantitative imaging of chlorophyll fluorescence. Planta, 199, 573–582. doi:10.1007/BF00195189.

    Article  CAS  Google Scholar 

  • Tartachnyk, I., Rademacher, I., & Kühbauch, W. (2006). Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precision Agriculture, 7, 281–293. doi:10.1007/s11119-006-9008-7.

    Article  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 41, 593–614. doi:10.1146/annurev.phyto.41.121702.103726.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., & Dickinson, M. (2001). Fluorescence from rust fungi: A simple and effective method to monitor the dynamics of fungal growth in planta. Physiological and Molecular Plant Pathology, 59, 137–141. doi:10.1006/pmpp.2001.0349.

    Article  Google Scholar 

  • Zillmann, E., Graef, S., Link, J., Batchelor, W. D., & Claupein, W. (2006). Assessment of cereal nitrogen requirements derived by optical on-the-go sensors on heterogeneous soils. Agronomy Journal, 98, 682–690. doi:10.2134/agronj2005.0253.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Matthias Braun for designing the analysing software and the German Research Foundation (DFG-research training group 722) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kuckenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuckenberg, J., Tartachnyk, I. & Noga, G. Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agric 10, 34–44 (2009). https://doi.org/10.1007/s11119-008-9082-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9082-0

Keywords

Navigation