Skip to main content
Log in

Martingale Solution to Equations for Differential Type Fluids of Grade Two Driven by Random Force of Lévy Type

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this article we study a system of nonlinear non-parabolic stochastic evolution equations driven by Lévy noise type. This system describes the motion of second grade fluids driven by random force. Global existence of a martingale solution is proved under general conditions on the noise. Since the coefficient of the noise does not satisfy a Lipschitz property, we could not prove any pathwise uniqueness result. We note that this is the first work dealing with a stochastic model for non-Newtonian fluids excited by external forces of Lévy noise type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Brzezńiak, Z., Wu, J.L.: Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371(1), 309–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38, 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernard, J.M.: Weak and classical solutions of equations of motion for second grade fluids. Commun. Appl. Nonlinear Anal 5, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. Wiley, New York (1999)

    Google Scholar 

  6. Brookes, M.: The matrix reference manual. [online] http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html (2011). Accessed 27 July 2012

  7. Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145(3–4), 615–637 (2009)

    Article  MATH  Google Scholar 

  8. Brzeźniak, Z., Hausenblas, E.: Martingale solutions for Stochastic equation of reaction diffusion type driven by Levy noise or Poisson random measure. Preprint (2009). arXiv:1010.5933

  9. Brzeźniak, Z., Hausenblas, E.: Uniqueness in law of the Itô integral with respect to Lévy Noise. In: Seminar on Stochastic Analysis, Random Fields and Applications VI Progress in Probability, vol. 63, part 1, pp. 37–57 (2011)

  10. Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brzeźniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola E., Zabczyk, J.: Time irregularity of generalized Ornstein–Uhlenbeck processes. C. R. Math. Acad. Sci. Paris 348(5–6), 273–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Busuioc, A.V.: On second grade fluids with vanishing viscosity. C. R. Acad. Paris, Série I 328(12), 1241–1246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Busuioc, A.V., Ratiu, T.S.: The second grade fluid and averaged Euler equations with Navier-slip boundary conditions. Nonlinearity 16, 1119–1149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, S., Foias, C., Titi, E., Wynne, S.: A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61(3), 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cioranescu, D., Girault, V.: Weak and classical solutions of a family of second grade fluids. Int. J. Non-Linear Mech. 32(2), 317–335 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cioranescu, D., Ouazar, E.H.: Existence and uniqueness for fluids of second grade. In: Nonlinear Partial Differential Equations, vol. 109, pp. 178–197. Collège de France Seminar, Pitman (1984)

  18. Cioranescu, D., Ouazar, E.H.: Existence et unicité pour les fluides de grade deux. C. R. Acad. Sci. Paris, Série I 298(13), 285–287 (1984)

    MATH  Google Scholar 

  19. Deugoue, G., Sango, M.: On the stochastic 3D Navier–Stokes-α model of fluids turbulence. Abstr. Appl. Anal. Art. ID 723236, 27 pp. (2009)

  20. Deugoué, G., Razafimandimby, P.A., Sango, M.: On the 3-D stochastic magnetohydrodynamic-α model. Stoch. Process. Their Appl. 122, 2211–2248 (2012)

    Article  MATH  Google Scholar 

  21. Dong, Z., Zhai, J.: Martingale solutions and Markov selection of stochastic 3D Navier–Stokes equations with jump. J. Differ. Equ. 250, 2737–2778 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dunn, J.E., Rajagopal, K.R.: Fluids of differntial type: Critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 668–729 (1995)

    Article  MathSciNet  Google Scholar 

  24. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Google Scholar 

  25. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science. Physica D 152–153, 505–519 (2001)

    Article  MathSciNet  Google Scholar 

  27. Fosdick, R.L., Rajagopal, K.R.: Anomalous features in the model of second grade fluids. Arch. Ration. Mech. Anal. 70, 145–152 (1978)

    MathSciNet  Google Scholar 

  28. Fosdick, R.L., Truesdell, C.: Universal flows in the simplest theories of fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(4), 323–341 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Gyöngy, I., Krylov, N.V.: On stochastics equations with respect to semimartingales. II. Itô formula in Banach spaces. Stochastics 6, 153–173 (1981/1982)

    Article  MATH  Google Scholar 

  30. Holm, D.D., Marsden, J.E., Ratiu, T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Holm, D.D., Marsden, J.E., Ratiu, T.: Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349, 4173–4177 (1998)

    Article  Google Scholar 

  32. Iftimie, D.: Remarques sur la limite α→0 pour les fluides de grade 2. C. R. Acad. Sci. Paris, Ser. I 334, 83–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. In: North-Holland Mathematical Library, vol. 24, 2nd edn. North-Holland, Amsterdam (1989)

    Google Scholar 

  34. Imkeller, P., Pavlyukevich, I.: First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Their Appl. 116, 611–642 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jacod, J. Shiryaev, A.: Limit theorems for stochastic processes. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  36. Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)

    Article  MATH  Google Scholar 

  37. Kallenberg, O.: Foundations of modern probability. In: Probability and its Applications (New York). Springer, New York (1997)

    Google Scholar 

  38. Kushner, H.J.: Numerical Methods for Controlled Stochastic Delay Systems. Birkhäuser, Boston (2008)

    Book  MATH  Google Scholar 

  39. Métivier, M.: Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Scuola Normale Superiore, Pisa (1988)

    MATH  Google Scholar 

  40. Mikulevicius, R., Rozovskii, B.L.: Martingale problems for stochastic PDE’s. In: Stochastic Partial Differential Equations: Six Perspectives. Math. Surveys Monogr., vol. 64, pp. 243–325. Amer. Math. Soc., Providence (1999)

  41. Mueller, C.: The heat equation with Lévy noise. Stoch. Process. Their Appl. 74, 67–82 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theory Relat. Fields 123, 157–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Noll, W., Truesdell, C.: The nonlinear field theory of mechanics. In: Handbuch der Physik, vol. III. Springer, Berlin (1975)

    Google Scholar 

  44. Parthasarathy, K.R.: Probability measures on metric spaces. In: Probability and Mathematical Statistics, vol. 3. Academic, New York (1967)

    Google Scholar 

  45. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Levy Noise. An evolution equation approach. In: Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press (2007)

  46. Rajagopal, K.R., Truesdell, C.A.: An introduction to the mechanics of fluids. In: Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2000)

    Google Scholar 

  47. Razafimandimby, P.A: Some mathematical problems in the dynamics of stochastic second-grade fluids. Ph.D. Thesis, University of Pretoria (2010)

  48. Razafimandimby, P.A., Sango, M.: Weak solutions of a stochastic model for two-dimensional second grade fluids. Boundary Value Problems 2010, Article ID 636140, 47 pp. (2010). doi:10.1155/2010/636140

  49. Razafimandimby, P.A., Sango, M.: Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids. C R. Math. Acad. Sci. Paris 348, 787–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Razafimandimby, P.A., Sango, M.: Strong solution for a stochastic model of two-dimensional second grade fluids: existence, uniqueness and asymptotic behavior. Nonlinear Anal. 75, 4251–4270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rivlin, R.S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Q. Appl. Math. 15, 212–215 (1957).

    MathSciNet  MATH  Google Scholar 

  52. Sango, M.: Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete Contin. Dyn. Syst. Ser. B 7(4), 885–905 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sango, M.: Magnetohydrodynamic turbulent flows: existence results. Phys. D 239(12), 912–923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shkoller, S.: Geometry and curvature of diffeomorphism groups with H 1 metric and hydrodynamics. J. Funct. Anal. 160, 337–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shkoller, S.: Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations. Appl. Math. Lett. 14, 539–543 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Situ, R.: Theory of stochstic differential equations with jumps and applications. In: Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2005)

    Google Scholar 

  57. Solonnikov, V.A.: On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. II. Proc. Steklov Inst. Math. 92, 269–339 (1968)

    Google Scholar 

  58. Temam, R.: Navier–Stokes Equations. North-Holland (1979)

  59. Truesdell, C.A.: A first course in rational continuum mechanics. Vol. 1. General concepts. In: Pure and Applied Mathematics, vol. 71, 2nd edn. Academic Press, Boston (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hausenblas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausenblas, E., Razafimandimby, P.A. & Sango, M. Martingale Solution to Equations for Differential Type Fluids of Grade Two Driven by Random Force of Lévy Type. Potential Anal 38, 1291–1331 (2013). https://doi.org/10.1007/s11118-012-9316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9316-7

Keywords

Mathematics Subject Classifications (2010)

Navigation