Skip to main content
Log in

Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.R. Abad M. Paino D’Urzo D. Lin M.L. Narasimhan M. Renveni J.K. Zhu X. Niu N.K. Singh P.M. Hasegawa R.A. Bressan (1996) ArticleTitleAntifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization Plant Sci. 118 11–23 Occurrence Handle10.1016/0168-9452(96)04420-2 Occurrence Handle1:CAS:528:DyaK28XjsFOlsbs%3D

    Article  CAS  Google Scholar 

  • S. Anžlovar M. Dermastia (2003) ArticleTitleThe comparative analysis of osmotins and osmotin-like PR-5 proteins Plant Biol. 5 116–124 Occurrence Handle10.1055/s-2003-40723

    Article  Google Scholar 

  • J. Bigirimana M. Höfte (2002) ArticleTitleInduction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria Phytoparasitica 30 159–168

    Google Scholar 

  • N. Capelli T. Diogon H. Greppin P. Simon (1997) ArticleTitleIsolation and characterization of a cDNA clone encoding an osmotin-like protein from Arabidopsis thaliana Gene 191 51–56 Occurrence Handle10.1016/S0378-1119(97)00029-2 Occurrence Handle1:CAS:528:DyaK2sXisFKmsLc%3D Occurrence Handle9210588

    Article  CAS  PubMed  Google Scholar 

  • R. Chen F. Wang A.G. Smith (1996) ArticleTitleA flower-specific gene encoding an osmotin-like protein from Lycopersicon esculentum Gene 179 301–302 Occurrence Handle10.1016/S0378-1119(96)00399-X Occurrence Handle8972917

    Article  PubMed  Google Scholar 

  • U. Conrath C.M.J. Pieterse B. Mauch-Mani (2002) ArticleTitlePriming in plant-pathogen interactions Trends Plant Sci. 7 210–216 Occurrence Handle10.1016/S1360-1385(02)02244-6 Occurrence Handle1:CAS:528:DC%2BD38Xjtl2kt70%3D Occurrence Handle11992826

    Article  CAS  PubMed  Google Scholar 

  • B.J. Cornelissen R.A. Hooft Huijsduijnen Particlevan J.F. Bol (1986) ArticleTitleA tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin Nature 321 531–532 Occurrence Handle10.1038/321531a0 Occurrence Handle1:CAS:528:DyaL28XksFGmtr4%3D

    Article  CAS  Google Scholar 

  • G. Meyer ParticleDe K. Capieau K. Audenaert A. Buchala J.-P. Métraux M. Höfte (1999) ArticleTitleNanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean Mol. Plant–Microbe Interact. 12 450–458 Occurrence Handle10226378

    PubMed  Google Scholar 

  • X.N Dong (2004) ArticleTitleNPR1, all things considered Curr. Opinion Plant Biol. 7 547–552 Occurrence Handle10.1016/j.pbi.2004.07.005 Occurrence Handle1:CAS:528:DC%2BD2cXntV2msLs%3D

    Article  CAS  Google Scholar 

  • B.J. Duijff D. Pouhair C. Olivain C. Alabouvette P. Lemanceau (1998) ArticleTitleImplication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47 Eur. J. Plant Pathol. 104 903–910 Occurrence Handle10.1023/A:1008626212305

    Article  Google Scholar 

  • T. Gaffney L. Friedrich B. Vernooij D. Negrotto G. Nye S. Uknes E. Ward H. Kessmann J. Ryals (1993) ArticleTitleRequirement of salicylic acid for the induction of systemic acquired resistance Science 261 754–756 Occurrence Handle1:CAS:528:DyaK3sXlsFKntr8%3D

    CAS  Google Scholar 

  • S. Hase J.A. Pelt ParticleVan L.C. Loon ParticleVan C.M.J. Pieterse (2003) ArticleTitleColonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection Physiol. Mol. Plant Pathol. 62 219–226 Occurrence Handle10.1016/S0885-5765(03)00059-6 Occurrence Handle1:CAS:528:DC%2BD3sXms1yisLw%3D

    Article  CAS  Google Scholar 

  • D.R. Hoagland D.I. Arnon (1938) ArticleTitleThe water culture method for growing plants without soil Calif. Agric. Exp. Stn. Bull. 347 36–39

    Google Scholar 

  • X. Hu A.S. Reddy (1995) ArticleTitleNucleotide sequence of a cDNA clone encoding a thaumatin-like protein from Arabidopsis Plant Physiol. 107 305–306 Occurrence Handle10.1104/pp.107.1.305 Occurrence Handle1:CAS:528:DyaK2MXjtVOmt7s%3D Occurrence Handle7870835

    Article  CAS  PubMed  Google Scholar 

  • X. Hu A.S. Reddy (1997) ArticleTitleCloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein Plant Mol. Biol. 34 949–959 Occurrence Handle10.1023/A:1005893119263 Occurrence Handle1:CAS:528:DyaK2sXlvVGgtbg%3D Occurrence Handle9290646

    Article  CAS  PubMed  Google Scholar 

  • A. Iavicoli E. Boutet A. Buchala J.-P. Métraux (2003) ArticleTitleInduced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0 Mol. Plant–Microbe Interact. 16 851–858 Occurrence Handle1:CAS:528:DC%2BD3sXnsFyktLs%3D Occurrence Handle14558686

    CAS  PubMed  Google Scholar 

  • S. Ishiguro Y. Watanabe N. Ito H. Nonaka N. Takeda T. Sakai H. Kanaya K. Okada (2002) ArticleTitleSHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins EMBO J. 21 898–908 Occurrence Handle10.1093/emboj/21.5.898 Occurrence Handle1:CAS:528:DC%2BD38XitFylsLs%3D Occurrence Handle11867518

    Article  CAS  PubMed  Google Scholar 

  • E.O. King M.K. Ward D.E. Raney (1954) ArticleTitleTwo simple media for the demonstration of phycocyanin and fluorescin J. Lab. Clin. Med. 44 301–307 Occurrence Handle1:STN:280:CyuC3cvktFc%3D Occurrence Handle13184240

    CAS  PubMed  Google Scholar 

  • G.J. King V.A. Turner C.E. Hussey SuffixJr. E. Syrkin Wurtele M. Lee (1988) ArticleTitleIsolation and characterization of a tomato cDNA clone which codes for a salt-induced protein Plant Mol. Biol. 10 401–412 Occurrence Handle10.1007/BF00014946 Occurrence Handle1:CAS:528:DyaL1cXmtVGqsb8%3D

    Article  CAS  Google Scholar 

  • J.W. Kloepper J. Leong M. Teintze M.N. Schroth (1980) ArticleTitleEnhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria Nature 286 885–886 Occurrence Handle10.1038/286885a0 Occurrence Handle1:CAS:528:DyaL3cXmtlGjs7c%3D

    Article  CAS  Google Scholar 

  • M. Knoester C.M.J. Pieterse J.F. Bol Particle Van L.C. Loon (1999) ArticleTitleSystemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application Mol. Plant–Microbe Interact. 12 720–727 Occurrence Handle1:CAS:528:DyaK1MXkslKhtLY%3D Occurrence Handle10475689

    CAS  PubMed  Google Scholar 

  • T. Kuboyama K.T. Yoshida G. Takeda (1997) ArticleTitleAn acidic 39-kDa protein secreted from stigmas of tobacco has an amino-terminal motif that is conserved among thaumatin-like proteins Plant Cell Physiol. 38 91–95 Occurrence Handle1:CAS:528:DyaK2sXntFWntA%3D%3D

    CAS  Google Scholar 

  • B.N. Kunkel A.F. Bent D. Dahlbeck R.W. Innes B.J. Staskawicz (1993) ArticleTitleRPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene AvrRpt2 Plant Cell 5 865–875 Occurrence Handle10.1105/tpc.5.8.865 Occurrence Handle1:CAS:528:DyaK2cXht12ktrY%3D Occurrence Handle8400869

    Article  CAS  PubMed  Google Scholar 

  • M. Leeman J.A. Pelt ParticleVan F.M. Ouden ParticleDen M. Heinsbroek P.A.H.M. Bakker B. Schippers (1995) ArticleTitleInduction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay Eur. J. Plant Pathol. 101 655–664

    Google Scholar 

  • D. Liu K.G. Raghothama P.M. Hasegawa R.A. Bressan (1994) ArticleTitleOsmotin overexpression in potato delays development of disease symptoms Proc. Natl. Acad. Sci. USA 91 1888–1892 Occurrence Handle1:CAS:528:DyaK2cXitFaktbk%3D Occurrence Handle11607463

    CAS  PubMed  Google Scholar 

  • Y.-G. Liu N. Mitsukawa T. Oosumi R.F. Whittier (1995) ArticleTitleEfficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR Plant J. 8 457–463 Occurrence Handle10.1046/j.1365-313X.1995.08030457.x Occurrence Handle1:CAS:528:DyaK2MXos1CltL8%3D Occurrence Handle7550382

    Article  CAS  PubMed  Google Scholar 

  • M. Maurhofer C. Reimmann P. Schmidli-Sacherer S.D. Heeb G. Défago (1998) ArticleTitleSalicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus Phytopathology 88 678–684 Occurrence Handle1:CAS:528:DyaK1cXksFClsb4%3D

    CAS  Google Scholar 

  • C. Nawrath S. Heck N. Parinthawong J.-P. Métraux (2002) ArticleTitleEDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family Plant Cell 14 275–286 Occurrence Handle10.1105/tpc.010376 Occurrence Handle1:CAS:528:DC%2BD38Xht1SrtrY%3D Occurrence Handle11826312

    Article  CAS  PubMed  Google Scholar 

  • D.H. Oh K.J. Song Y.U. Shin W.I. Chung (2000) ArticleTitleIsolation of a cDNA encoding a 31-kDa, pathogenesis-related 5/thaumatin-like (PR5/TL) protein abundantly expressed in apple fruit (Malus domestica cv. Fuji) Biosci. Biotechnol. Biochem. 64 355–362 Occurrence Handle10.1271/bbb.64.355 Occurrence Handle1:CAS:528:DC%2BD3cXhvVCjt7s%3D Occurrence Handle10737193

    Article  CAS  PubMed  Google Scholar 

  • S. Parinov M. Sevugan D. Ye W.C. Yang M. Kumaran V. Sundaresan (1999) ArticleTitleAnalysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis Plant Cell 11 2263–2270 Occurrence Handle10.1105/tpc.11.12.2263 Occurrence Handle1:CAS:528:DC%2BD3cXkt1Cgsw%3D%3D Occurrence Handle10590156

    Article  CAS  PubMed  Google Scholar 

  • G. Payne W. Middlesteadt S. Williams N. Desai T.D. Parks S. Dincher M. Carnes J. Ryals (1988) ArticleTitleIsolation and nucleotide-sequence of a novel cDNA clone encoding the major form of pathogenesis-related protein-R Plant Mol. Biol. 11 223–224 Occurrence Handle10.1007/BF00015674 Occurrence Handle1:CAS:528:DyaL1MXhtV2htrY%3D

    Article  CAS  Google Scholar 

  • C.M.J. Pieterse L.C. Van Loon (2004) ArticleTitleNPR1: the spider in the web of induced resistance signaling pathways Curr. Opinion Plant Biol. 7 456–464 Occurrence Handle10.1016/j.pbi.2004.05.006 Occurrence Handle1:CAS:528:DC%2BD2cXlsVWhur0%3D

    Article  CAS  Google Scholar 

  • C.M.J. Pieterse J.A. Van Pelt J. Ton S. Parchmann M.J. Mueller A.J. Buchala J.-P. Métraux L.C. Loon ParticleVan (2000) ArticleTitleRhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production Physiol. Mol. Plant Pathol. 57 123–134 Occurrence Handle10.1006/pmpp.2000.0291 Occurrence Handle1:CAS:528:DC%2BD3cXntl2ntLk%3D

    Article  CAS  Google Scholar 

  • C.M.J. Pieterse S.C.M. Wees ParticleVan E. Hoffland J.A. Pelt ParticleVan L.C. Loon ParticleVan (1996) ArticleTitleSystemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression Plant Cell 8 1225–1237 Occurrence Handle10.1105/tpc.8.8.1225 Occurrence Handle1:CAS:528:DyaK28XltlKjsbc%3D Occurrence Handle8776893

    Article  CAS  PubMed  Google Scholar 

  • C.M.J. Pieterse S.C.M. Wees ParticleVan J. Ton J.A. Pelt ParticleVan L.C. Loon ParticleVan (2002) ArticleTitleSignalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana Plant Biol. 4 535–544 Occurrence Handle10.1055/s-2002-35441 Occurrence Handle1:CAS:528:DC%2BD38Xps1Orsb0%3D

    Article  CAS  Google Scholar 

  • C.M.J. Pieterse S.C.M. Wees ParticleVan J.A. Pelt ParticleVan M. Knoester R. Laan H. Gerrits P.J. Weisbeek L.C. Loon ParticleVan (1998) ArticleTitleA novel signaling pathway controlling induced systemic resistance in Arabidopsis Plant Cell 10 1571–1580 Occurrence Handle10.1105/tpc.10.9.1571 Occurrence Handle1:CAS:528:DyaK1cXmsVKiu7Y%3D Occurrence Handle9724702

    Article  CAS  PubMed  Google Scholar 

  • C.M. Press M. Wilson S. Tuzun J.W. Kloepper (1997) ArticleTitleSalicylic acid produced by Serratia marcescens 91–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco Mol. Plant–Microbe Interact. 10 761–768 Occurrence Handle1:CAS:528:DyaK2sXkvFeqtrY%3D

    CAS  Google Scholar 

  • J.M. Raaijmakers D.M. Weller (1998) ArticleTitleNatural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils Mol. Plant–Microbe Interact. 11 144–152 Occurrence Handle1:CAS:528:DyaK1cXmsFWhsA%3D%3D

    CAS  Google Scholar 

  • S. Ramachandran V. Sundaresan (2001) ArticleTitleTransposons as tools for functional genomics Plant Physiol. Biochem. 39 243–252

    Google Scholar 

  • Ran, L.X., Van Loon, L.C. and Bakker, P.A.H.M. 2000. No role for bacterially-produced salicylic acid in induction of systemic resistance in ArabidopsisSuppression of bacterial wilt in Eucalyptus and bacterial speck in Arabidopsis by fluorescent Pseudomonas spp. strains: conditions and mechanisms. Ph.D. Thesis L.X. Ran, Utrecht University, pp. 70–82

  • M. Rep H.L. Dekker J.H. Vossen A.D. Boer Particlede P.M. Houterman D. Speijer J.W. Back C.G. Koster Particlede B.J.C. Cornelissen (2002) ArticleTitleMass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato Plant Physiol. 130 904–917 Occurrence Handle10.1104/pp.007427 Occurrence Handle1:CAS:528:DC%2BD38XotVKntb4%3D Occurrence Handle12376655

    Article  CAS  PubMed  Google Scholar 

  • M. Richardson S. Valdes-Rodriguez A. Blanco-Labra (1987) ArticleTitleA possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor Nature 327 432–434 Occurrence Handle10.1038/327432a0

    Article  Google Scholar 

  • A.F. Ross (1961) ArticleTitleSystemic acquired resistance induced by localized virus infections in plants Virology 14 340–358 Occurrence Handle10.1016/0042-6822(61)90319-1 Occurrence Handle1:STN:280:CC%2BD28zislA%3D Occurrence Handle13743578

    Article  CAS  PubMed  Google Scholar 

  • R. Ruiz-Medrano B. Jimenez-Moraila L. Herrera-Estrella R.F. Rivera-Bustamante (1992) ArticleTitleNucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection Plant Mol. Biol. 20 1199–1202 Occurrence Handle10.1007/BF00028909 Occurrence Handle1:CAS:528:DyaK3sXltFemurg%3D Occurrence Handle1463856

    Article  CAS  PubMed  Google Scholar 

  • B. Ruperti L. Cattivelli S. Pagni A Ramina (2002) ArticleTitleEthylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica) J. Exp. Bot. 53 429–437 Occurrence Handle10.1093/jexbot/53.368.429 Occurrence Handle1:CAS:528:DC%2BD38XitVegt74%3D Occurrence Handle11847241

    Article  CAS  PubMed  Google Scholar 

  • C.-M. Ryu C.-H. Hu M.S. Reddy J.W. Kloepper (2003) ArticleTitleDifferent signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae New Phytologist 160 413–420 Occurrence Handle10.1046/j.1469-8137.2003.00883.x Occurrence Handle1:CAS:528:DC%2BD3sXpt1Ogtr8%3D

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

  • P.M. Schenk K. Kazan I. Wilson J.P. Anderson T. Richmond S.C. Somerville J.M. Manners (2000) ArticleTitleCoordinated plant defense responses in Arabidopsis revealed by microarray analysis Proc. Natl. Acad. Sci. USA 97 11655–11660 Occurrence Handle10.1073/pnas.97.21.11655 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2qtro%3D Occurrence Handle11027363

    Article  CAS  PubMed  Google Scholar 

  • B. Schippers A.W. Bakker P.A.H.M. Bakker (1987) ArticleTitleInteractions of deleterious and beneficial rhizosphere micoorganisms and the effect of cropping practices Annu. Rev. Phytopathol. 115 339–358 Occurrence Handle10.1146/annurev.py.25.090187.002011

    Article  Google Scholar 

  • N.K. Singh C.A. Bracker P.M. Hasegawa A.K. Handa S. Buckel M.A. Hermodson E. Pfankoch F.E. Regnier R.A. Bressan (1987) ArticleTitleCharacterization of osmotin Plant Physiol. 85 529–536 Occurrence Handle1:CAS:528:DyaL1cXhvFertg%3D%3D

    CAS  Google Scholar 

  • N.K. Singh D.E. Nelson D. Kuhn P.M. Hasegawa R.A. Bressan (1989) ArticleTitleMolecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential Plant Physiol. 90 1096–1101 Occurrence Handle1:CAS:528:DyaK3cXitFWlu7k%3D

    CAS  Google Scholar 

  • S.H. Spoel A. Koornneef S.M.C. Claessens J.P. Korzelius J.A. Pelt ParticleVan M.J. Mueller A.J. Buchala J.-P. Métraux R. Brown K. Kazan L.C. Loon ParticleVan X. Dong C.M.J. Pieterse (2003) ArticleTitleNPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol Plant Cell 15 760–770 Occurrence Handle10.1105/tpc.009159 Occurrence Handle1:CAS:528:DC%2BD3sXisVektb0%3D Occurrence Handle12615947

    Article  CAS  PubMed  Google Scholar 

  • L. Sticher B. Mauch-Mani J.-P Métraux (1997) ArticleTitleSystemic acquired resistance Annu. Rev. Phytopathol. 35 235–270 Occurrence Handle10.1146/annurev.phyto.35.1.235 Occurrence Handle1:CAS:528:DyaK2sXmtVGhsrg%3D Occurrence Handle15012523

    Article  CAS  PubMed  Google Scholar 

  • V. Sundaresan P. Springer T. Volpe S. Haward J.D.G. Jones C. Dean H. Ma R. Martienssen (1995) ArticleTitlePatterns of gene-action in plant development revealed by enhancer trap and gene trap transposable elements Genes Dev. 9 1797–1810 Occurrence Handle1:CAS:528:DyaK2MXnt1SksLY%3D Occurrence Handle7622040

    CAS  PubMed  Google Scholar 

  • D.B. Tattersall R. Heeswijck ParticleVan P.B. Hoj (1997) ArticleTitleIdentification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes Plant Physiol. 114 759–769 Occurrence Handle10.1104/pp.114.3.759 Occurrence Handle1:CAS:528:DyaK2sXkslOqs78%3D Occurrence Handle9232867

    Article  CAS  PubMed  Google Scholar 

  • J. Ton M. Vos ParticleDe C. Robben A.J. Buchala J.-P. Métraux L.C. Loon ParticleVan C.M.J. Pieterse (2002a) ArticleTitleCharacterisation of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance Plant J. 29 11–21 Occurrence Handle10.1046/j.1365-313x.2002.01190.x Occurrence Handle1:CAS:528:DC%2BD38XhsVGksLc%3D

    Article  CAS  Google Scholar 

  • J. Ton C.M.J. Pieterse L.C. Loon ParticleVan (1999) ArticleTitleIdentification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato Mol. Plant–Microbe Interact. 12 911–918 Occurrence Handle1:CAS:528:DyaK1MXmtl2gsrY%3D Occurrence Handle10517031

    CAS  PubMed  Google Scholar 

  • J. Ton J.A. Pelt ParticleVan L.C. Loon ParticleVan C.M.J. Pieterse (2002b) ArticleTitleDifferential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis Mol. Plant–Microbe Interact. 15 27–34 Occurrence Handle1:CAS:528:DC%2BD38XktlGiuw%3D%3D

    CAS  Google Scholar 

  • S. Uknes B. Mauch-Mani M. Moyer S. Potter S. Williams S. Dincher D. Chandler A. Slusarenko E. Ward J. Ryals (1992) ArticleTitleAcquired resistance in Arabidopsis Plant Cell 4 645–656

    Google Scholar 

  • H. Wel ParticleVan der K. Loeve (1972) ArticleTitleIsolation and characterization of Thaumatin 1 and 2, the sweet-tasting proteins from Thaumatococcus danielii Benth Eur. J. Biochem. 31 221–225 Occurrence Handle10.1111/j.1432-1033.1972.tb02522.x Occurrence Handle4647176

    Article  PubMed  Google Scholar 

  • L.C. Loon ParticleVan P.A.H.M. Bakker (2003) Signalling in rhizobacteria-plant interactions J. E.J.W. Kroon Visser ParticleDe (Eds) Ecological Studies Springer-Verlag Berlin Heidelberg 287–330

    Google Scholar 

  • L.C. Loon ParticleVan P.A.H.M. Bakker C.M.J. Pieterse (1998) ArticleTitleSystemic resistance induced by rhizosphere bacteria Annu. Rev. Phytopathol. 36 453–483 Occurrence Handle10.1146/annurev.phyto.36.1.453 Occurrence Handle15012509

    Article  PubMed  Google Scholar 

  • L.C. Loon ParticleVan E.A. Strien ParticleVan (1999) ArticleTitleThe families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins Physiol. Mol. Plant Pathol. 55 85–97 Occurrence Handle10.1006/pmpp.1999.0213

    Article  Google Scholar 

  • R. Peer ParticleVan G.J. Niemann B. Schippers (1991) ArticleTitleInduced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r Phytopathology 91 728–734

    Google Scholar 

  • S.C.M. Wees ParticleVan E.A.M. Swart ParticleDe J.A. Pelt ParticleVan L.C. Loon ParticleVan C.M.J. Pieterse (2000) ArticleTitleEnhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana Proc. Natl. Acad. Sci. USA 97 8711–8716 Occurrence Handle10.1073/pnas.130425197 Occurrence Handle10890883

    Article  PubMed  Google Scholar 

  • S.C.M. Wees ParticleVan M. Luijendijk I. Smoorenburg L.C. Loon ParticleVan C.M.J. Pieterse (1999) ArticleTitleRhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge Plant Mol. Biol. 41 537–549 Occurrence Handle10.1023/A:1006319216982 Occurrence Handle10608663

    Article  PubMed  Google Scholar 

  • S.C.M. Wees ParticleVan C.M.J. Pieterse A. Trijssenaar Y.A.M. Westende ParticleVan F. Hartog L.C. Loon ParticleVan (1997) ArticleTitleDifferential induction of systemic resistance in Arabidopsis by biocontrol bacteria Mol. Plant–Microbe Interact. 10 716–724 Occurrence Handle9245833

    PubMed  Google Scholar 

  • B.W.M. Verhagen J. Glazebrook T. Zhu H.-S. Chang L.C. Loon ParticleVan C.M.J. Pieterse (2004) ArticleTitleThe transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis Mol. Plant–Microbe Interact. 17 895–908 Occurrence Handle1:CAS:528:DC%2BD2cXlvFKmtLg%3D Occurrence Handle15305611

    CAS  PubMed  Google Scholar 

  • C.W. Vroemen N. Aarts P.M.J. In Rieden Particleder A. Kammen ParticleVan S.C. Vries ParticleDe (1998) Identification of genes expressed during Arabidopsis thaliana embryogenesis using enhancer trap and gene trap Ds-transposons N.V. Raikhel (Eds) Cellular Integration of Signal Transduction Pathways Springer Verlag Berlin 207–232

    Google Scholar 

  • X. Wang P. Zafian M. Choudhary M. Lawton (1996) ArticleTitleThe PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins Proc. Natl. Acad. Sci. USA 93 2598–2602 Occurrence Handle10.1073/pnas.93.6.2598 Occurrence Handle1:CAS:528:DyaK28XhvVSku70%3D Occurrence Handle8637920

    Article  CAS  PubMed  Google Scholar 

  • M.C. Whalen R.W. Innes A.F. Bent B.J. Staskawicz (1991) ArticleTitleIdentification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean Plant Cell 3 49–59 Occurrence Handle10.1105/tpc.3.1.49 Occurrence Handle1:STN:280:By2H3cvnsVA%3D Occurrence Handle1824334

    Article  CAS  PubMed  Google Scholar 

  • M.C. Wildermuth J. Dewdney G. Wu F.M. Ausubel (2001) ArticleTitleIsochorismate synthase is required to synthesize salicylic acid for plant defence Nature 414 562–565 Occurrence Handle10.1038/35107108 Occurrence Handle1:CAS:528:DC%2BD3MXptFert7s%3D Occurrence Handle11734859

    Article  CAS  PubMed  Google Scholar 

  • C.P. Woloshuk J.S. Meulenhoff P.M. Sela-Buurlage P.J.M. Elzen ParticleVan den B.J.C. Cornelissen (1991) ArticleTitlePathogen-induced proteins with inhibitory activity towards Phytophthora infestans Plant Cell 3 619–628 Occurrence Handle10.1105/tpc.3.6.619 Occurrence Handle1:CAS:528:DyaK3MXltlajurc%3D Occurrence Handle1841721

    Article  CAS  PubMed  Google Scholar 

  • Z. Yan M.S. Reddy C.-M. Ryu J.A. McInroy M. Wilson J.W. Kloepper (2002) ArticleTitleInduced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria Phytopathol. 92 1329–1333 Occurrence Handle1:CAS:528:DC%2BD38XpsV2rsbY%3D

    CAS  Google Scholar 

  • S. Zhang A.-L. Moyne M.S. Reddy J.W. Kloepper (2002) ArticleTitleThe role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco Biol. Control 25 288–296 Occurrence Handle10.1016/S1049-9644(02)00108-1

    Article  Google Scholar 

  • P. Zimmermann M. Hirsch-Hoffmann L. Hennig W. Gruissem (2004) ArticleTitleGENEVESTIGATOR Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136 2621–2632 Occurrence Handle1:CAS:528:DC%2BD2cXnvFOru74%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corné M.J. Pieterse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Léon-Kloosterziel, K.M., Verhagen, B.W.M., Keurentjes, J.J.B. et al. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57, 731–748 (2005). https://doi.org/10.1007/s11103-005-3097-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-3097-y

Keywords

Navigation