Skip to main content
Log in

The evolution of foliar terpene diversity in Myrtaceae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plant terpenes play many roles in natural systems, from altering plant–animal interactions, to altering the local abiotic environment. Additionally, many industries depend on terpenes. For example, commercially used essential oils, including tea tree oil and lavender oil, are a mixture of terpenes. Many species of the family Myrtaceae form a key resource for these industries due to the high concentration of terpenes found predominately in their leaves. The frequency of chemotypic differences within many species and populations can lead to costly errors in industry. Terpene diversity in Myrtaceae is driven by variation in the terpene synthase enzymes, which catalyse the conversion a few common substrates into thousands of terpene structures. We review terpene diversity within and between species of Myrtaceae and relate this to variation in the terpene synthase enzymes to reconstruct the evolution of foliar terpene diversity in Myrtaceae. We found that (1) high inter- and intra-species variation exists in terpene profile and that α-pinene the most likely ancestral foliar terpene, and (2) that high concentration of 1,8-cineole (a compound which is regarded as the signature compound of Myrtaceae) is limited to just four Myrtaceae sub-families. We suggest that the terpene synthase enzymes do not limit terpene diversity in this family and variation in these enzymes suggests a mode of enzymatic evolution that could lead to high 1,8-cineole production. Our analysis highlights the need to standardise methods for collecting and reporting foliar terpene data, and we discuss some methods and issues here. Although there are many gaps in the published data, our large scale analysis using the results of many studies, shows the value of a family wide analysis for understanding both the evolution and industrial potential of terpene-producing plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ammon DG, Barton AFM, Clarke DA, Tjandra J (1985) Rapid and accurate chemical determination of the water content of plants containing volatile oils. Analyst 110:917–920

    Article  CAS  Google Scholar 

  • Andrew R, Wallis I, Harwood C, Henson M, Foley W (2007) Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901

    Article  PubMed  Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Foley WJ (2010) Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann Bot 105:707–717

    Article  PubMed Central  PubMed  Google Scholar 

  • Andrew RL, Keszei A, Foley WJ (2013) Intensice sampling identifies new chemotypes, population divergence and biosynthetic connections among terpenoids in Eucalyptus tricarpa. Phytochemistry 94:148–158

    Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Biffin E, Lucas EJ, Craven LA, Ribeiro da Costa I, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann Bot 106:79–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birks JS, Kanowski PJ (1993) Analysis of resin compositional data. Silvae Genet 42:340–350

    Google Scholar 

  • Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). PNAS 95:6756–6761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boland DJ, Brophy JJ, House APN (1991) Eucalyptus leaf oils. Use, chemistry, distillation and marketing. Inkata Press, Sydney, Australia

    Google Scholar 

  • Bouwmeester HJ, Verstappen FWA, Posthumus MA, Dicke M (1999) Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol 121:173–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brophy JJ, Southwell IA (2002) Eucalyptus chemistry. In: Coppen JJ (ed) Eucalyptus: the genus Eucalyptus. Taylor and Francis, New York

    Google Scholar 

  • Brophy JJ, Goldsack RJ, Forster PI (2006) A preliminary examination of the leaf oils of the genus Xanthostemon (Myrtaceae) in Australia. J Essent Oil Res 18:222–230

    Article  CAS  Google Scholar 

  • Butcher PA, Doran JC, Slee MU (1994) Intraspecific variation in the leaf oils of Melaleuca alternifolia (Myrtaceae). Biochem Syst Ecol 22:419–430

    Article  CAS  Google Scholar 

  • Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466

    Article  Google Scholar 

  • Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charles DJ, Simon JE (1990) Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. J Am Soc Hortic Sci 115:458–462

    CAS  Google Scholar 

  • Chen H-C, Sheu M-J, Lin L-Y, Wu C-M (2007) Chemical composition of the leaf essential oil of Psidium guajava L. from Taiwan. J Essent Oil Res 19:345–347

    Article  CAS  Google Scholar 

  • Christensson JB, Forsström P, Wennberg A-M, Karlberg A-T, Matura M (2009) Air oxidation increases skin irritation from fragrance terpenes. Contact Dermatitis 60:32–40

    Article  CAS  Google Scholar 

  • Cornwell CP, Reddy N, Leach DN, Grant WS (2000a) Origin of (+)-delta-cadinene and the cubenols in the essential oils of the Myrtaceae. Flavour Fragr J 15:352–361

    Article  CAS  Google Scholar 

  • Cornwell CP, Reddy N, Leach DN, Wyllie SG (2000b) Hydrolysis of hedycaryol: the origin of the eudesmols in the Myrtaceae. Flavour Fragr J 15:421–431

    Article  CAS  Google Scholar 

  • Cornwell CP, Reddy N, Leach DN, Wyllie SG (2001) Germacradienols in the essential oils of the Myrtaceae. Flavour Fragr J 16:263–273

    Article  CAS  Google Scholar 

  • Crankshaw DR, Langenheim JH (1981) Variation in terpenes and phenolics through leaf development in Hymenaea and its possible significance to herbivory. Biochem Syst Ecol 9:115–124

    Article  CAS  Google Scholar 

  • Croteau R, Davis E, Ringer K, Wildung M (2005) (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92:562–577

    Article  CAS  PubMed  Google Scholar 

  • De Vincenzi M, Silano M, De Vincenzi A, Maialetti F, Scazzocchio B (2002) Constituents of aromatic plants: eucalyptol. Fitoterapia 73:269–275

    Article  PubMed  Google Scholar 

  • DeGabriel J, Moore B, Shipley L, Krockenberger A, Wallis IR, Johnson C, Foley WJ (2009) Inter-population differences in the tolerance of a marsupial folivore to plant secondary metabolites. Oecologia 161:539–548

    Article  PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Plant Biol 102:933–938

    CAS  Google Scholar 

  • Fähnrich A, Krause K, Piechulla B (2011) Product variability of the ‘cineole cassette’ monoterpene synthases of related Nicotiana species. Mol Plant 4:965–984

    Article  PubMed  Google Scholar 

  • Govaerts, R (2008) World checklist of Myrtaceae: Kew Pub

  • Grattapaglia D, Vaillancourt R, Shepherd M, Thumma B, Foley W, Külheim C, Potts B, Myburg A (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. TGG 8:463–508

    Google Scholar 

  • Greenhagen BT, O’Maille PE, Noel JP, Chappell J (2006) Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. PNAS 103:9826–9831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grubb PJ, Metcalfe DJ, Grubb EA, Jones GD (1998) Nitrogen-richness and prtoection of seeds in Australian tropical rainforest: a test of plant defence theory. Oikos 82:467–482

    Article  Google Scholar 

  • Guex N, Peitsch M, Schwede T, Diemand A (1995–2011) DeepView/Swiss-PdbViewer v4.0.4. Swiss Institute of Bioinformatics

  • Hall D, Robert J, Keeling C, Domanski D, Lara A, Jancsik S, Kuzyk M, Hamberger B, Borchers C, Bohlmann J (2011) An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil. Plant J 65:936–948

    Article  CAS  PubMed  Google Scholar 

  • Homer LE, Leach DN, Lea D, Slade Lee L, Henry RJ, Baverstock PR (2000) Natural variation in the essential oil content of Melaleuca alternifolia Cheel (Myrtaceae). Biochem Syst Ecol 28:367–382

    Article  CAS  PubMed  Google Scholar 

  • Horner JD, Gosz JR, Cates RG (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132:869–883

    Article  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Hyatt DC, Croteau R (2005) Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (−)-pinene synthase from Abies grandis. Arch Biochem Biophys 439:222–233

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Nishiyama A, Yamamura S, Hirata Y (1969) Conversion of elemene-type sesquiterpenes into cadinene-type compounds and formation of ten-membered germacrone-type intermediates. Tetrahedron Lett 10:4295–4298

    Article  Google Scholar 

  • Ireland B, Hibbert D, Goldsack R, Doran J, Brophy J (2002) Chemical variation in the leaf essential oil of Melaleuca quinquenervia (Cav.) S.T. Blake. Biochem Syst Ecol 30:457–470

    Article  CAS  Google Scholar 

  • Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19:1994–2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kant M, Baldwin I (2007) The ecogenetics and ecogenomics of plant–herbivore interactions: rapid progress on a slippery road. Curr Opin Genet Dev 17:519–524

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Hyatt D, Croteau R (2004) Altering product outcome in Abies grandis (−)-limonene synthase and (-)-limonene/(−)-alpha-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys 425:65–76

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur H (2010) The antimicrobial activity of essential oil and plant extracts of Woodfordia fruticosa. Arch Appl Sci Res 2:302–309

    CAS  Google Scholar 

  • Keeling C, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  PubMed  Google Scholar 

  • Keszei A, Brubaker CL, Foley WJ (2008) A molecular perspective on terpene variation in Australian Myrtaceae. Aust J Bot 56:197–213

    Article  CAS  Google Scholar 

  • Keszei A, Brubaker CL, Carter R, Köllner T, Degenhardt J, Foley WJ (2010) Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae. Phytochemistry 71:844–852

    Article  CAS  PubMed  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115–1131

    Article  PubMed Central  PubMed  Google Scholar 

  • Köllner TG, O’Maille PE, Gatto N, Boland W, Gershenzon J, Degenhardt J (2006) Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch Biochem Biophys 448:83–92

    Article  PubMed  Google Scholar 

  • Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70:1139–1145

    Article  PubMed  Google Scholar 

  • Külheim C, Webb H, Yeoh SH, Wallis I, Moran G, Foley W (2011) Using the Eucalyptus genome to understand the evolution of plant secondary metabolites in the Myrtaceae. BMC Proc 5:O11

    Article  PubMed Central  Google Scholar 

  • Külheim C, Padovan A, Hefer C, Krause S, Degenhardt J, Myburg A, Foley WJ (2013) The Eucalyptus terpene synthase gene family. New Phytol (in press)

  • Langenheim JH, Foster CE, McGinley RB (1980) Inhibitory effects of different quantitative compositions of Hymenaea leaf resins on a generalist herbivore Spodoptera exigua. Biochem Syst Ecol 8:385–396

    Article  Google Scholar 

  • Lawler IR, Foley WJ, Eschler BM, Pass DM, Handasyde K (1998) Intraspecific variation in Eucalyptus secondary metabolites determines food intake by folivorous marsupials. Oecologia 116:160–169

    Article  Google Scholar 

  • Levin DA (1976) The chemical defenses of plants to pathogens and hrbivores. Annu Rev Ecol Syst 7:121–159

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Linhart YB, Thompson JD (1995) Terpene-based selective herbivory by Helix aspersa (Mollusca) on Thymus vulgaris (Labiatae). Oecologia 102:126–132

    Google Scholar 

  • Macel M, Klinkhamer P (2010) Chemotype of Senecio jacobaea affects damage by pathogens and insect herbivores in the field. Evol Ecol 24:237–250

    Article  Google Scholar 

  • Maida M, Carroll A, Coll J (1993) Variability of terpene content in the soft coral Sinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications. J Chem Ecol 19:2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Aubourg S, Schouwey M, Daviet L, Schalk M, Toub O, Lund S, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuki M, Foley WJ, Floyd R (2011) Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles. J Chem Ecol 37:286–300

    Article  CAS  PubMed  Google Scholar 

  • McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56

    Article  CAS  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2013) Causes and consequences of intraspecific chemical diversity. New Phytol (in press)

  • Ogunbinu AO, Ogunwande IA, Walker TM, Setzer WN (2007) Study on the essential oil of Lawsonia inermis (L) Lythraceae. J Essent Oil Bear Plants 10:184–188

    Article  CAS  Google Scholar 

  • Padovan A, Keszei A, Koellner TG, Degenhardt J, Foley WJ (2010) The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Padovan A, Keszei A, Wallis IR, Foley WJ (2012) Mosaic eucalypt trees suggest genetic control at a point that influences several metabolic pathways. J Chem Ecol 38:914–923

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Prosser I, Altug IG, Phillips AL, König WA, Bouwmeester HJ, Beale MH (2004) Enantiospecific (+)- and (−)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Arch Biochem Biophys 432:136–144

    Article  CAS  PubMed  Google Scholar 

  • Prosser IM, Adams RJ, Beale MH, Hawkins ND, Phillips AL, Pickett JA, Field LM (2006) Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha × piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry 67:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slee AV, Brooker MIH, Duffy SM, West JG (2006) EUCLID eucalypts of Australia third edition. CSIRO, Canberra

    Google Scholar 

  • Steffen RB, Antoniolli ZI, Steffen GPK, da Silva RF (2012) Essential oil of Eucalyptus grandis Hill ex Maiden in stimulating mycorrhizal sibipiruna seedlings (Ceasalpinia peltophoroides Benth.). Cienc Florest 22:69–78

    Google Scholar 

  • Steinbauer MJ (2010) Latitudinal trends in foliar oils of eucalypts: environmental correlates and diversity of chrysomelid leaf-beetles. Austral Ecol 35:204–213

    Article  Google Scholar 

  • Stubbs BJ, Specht A, Brushett D (2004) The essential oil of Cinnamomum camphora (L.) Nees and Eberm.—variation in oil composition throughout the tree in two chemotypes from eastern Australia. J Essent Oil Res 16:200–205

    Article  CAS  Google Scholar 

  • Suni T, Kulmala M, Hirsikko A, Bergman T, Laakso L, Aalto P, Leuning R, Cleugh H, Zegelin S, Hughes D, van Gorsel E, Kitchen M, Vana M, Hõrrak U, Mirme S, Mirme A, Sevanto S, Twining J, Tadros C (2008) Formation and characteristics of ions and charged aerosol particles in a native Australian eucalypt forest. Atmos Chem Phys 8:129–139

    Article  CAS  Google Scholar 

  • Thornhill AH, Crisp MD (2012) Phylogenetic assessment of pollen characters in Myrtaceae. Aust Syst Bot 25:171–187

    Article  Google Scholar 

  • Thornhill AH, Hope GS, Craven LA, Crisp MD (2012) Pollen morphology of the Myrtaceae. Part 4: tribes Kanieae, Myrteae and Tristanieae. Aust J Bot 60:260–289

    Article  Google Scholar 

  • Toudahl AB, Filho SAV, Souza GHB, Morais LD, Santos ODH, Jäger AK (2012) Chemical composition of the essential oil from Microlicia graveolens growing wild in Minas Gerais. Rev Bras Farmacogn 22:680–681

    Article  CAS  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  CAS  PubMed  Google Scholar 

  • Van Poecke RMP, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928

    Article  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Wallis IR, Keszei A, Henery ML, Moran GF, Forrester R, Maintz J, Marsh KJ, Andrew RL, Foley WJ (2011) A chemical perspective on the evolution of variation in Eucalyptus globulus. Perspect Plant Ecol Evol Syst 13:305–318

    Article  Google Scholar 

  • Webb H, Lanfear R, Hamill J, Foley WJ, Külheim C (2013) The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway. PLoS One 8:e60631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson PG (2011) Myrtaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Berlin, pp 212–271

    Google Scholar 

  • Wilson P, O’Brien M, Heslewood M, Quinn C (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Syst Evol 251:3–19

    Article  Google Scholar 

  • Wise ML, Savage TJ, Katahira E, Croteau R (1998) Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J Biol Chem 273:14891–14899

    Article  CAS  PubMed  Google Scholar 

  • World-Health-Organisation (1999) d-Limonene. In Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances: summary of data reported and evaluation. IARC, pp 307–327

  • Zhuang X, Köllner TG, Zhao N, Li G, Jiang Y, Zhu L, Ma J, Degenhardt J, Chen F (2012) Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. Plant J 69:70–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Australian Research Council to WJF (LP110100184). We thank our partners in that work (Australian Tea Tree Industry Association and GR Davis) for their support and appreciate the advice and comments of many essential oil chemists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Padovan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11101_2013_9331_MOESM1_ESM.xls

Supplementary material 1 (XLS 1138 kb): A heat map of the most abundant foliar terpenes found in Myrtaceae. The 110 terpenes are listed in the first row and the 1393 species of Myrtaceae are listed in the first column. The most abundant compound is coloured in the darkest colour (1) and the sixth most abundant compound (6) is coloured in the lightest colour in each row

Supplementary material 2 (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padovan, A., Keszei, A., Külheim, C. et al. The evolution of foliar terpene diversity in Myrtaceae. Phytochem Rev 13, 695–716 (2014). https://doi.org/10.1007/s11101-013-9331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9331-3

Keywords

Navigation