Skip to main content
Log in

Nanocomposite Degradable Hydrogels: Demonstration of Remote Controlled Degradation and Drug Release

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate remote controlled degradation of degradable nanocomposite hydrogels by application of an alternating magnetic field (AMF). Further, it was desired to study the AMF effect on the drug release properties of these systems.

Methods

Degradable nanocomposite hydrogels were synthesized by incorporating iron oxide nanoparticles into a degradable hydrogel that exhibited temperature dependent degradation. Heating, degradation, and drug release studies were conducted by application of an AMF to determine if modulation of degradation and drug release could be attained.

Results

Hydrogels were successfully prepared, shown to have temperature dependent degradation, and shown to heat when exposed to the AMF. The degradation rate of the exposed samples was demonstrated to be higher than control samples, thus modulation of degradation was obtained. The release of a model drug from the system was modulated by exposure to the AMF.

Conclusions

This is the first demonstration of remote controlled degradation using an AMF stimulus. Here, the proof of the concept has been presented, and there is great potential to enhance this effect through various methods. The ability to remotely control degradation of an implanted device opens a new area of improved medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. S. Nair, and C. T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9):762–798 (2007). doi:10.1016/j.progpolymsci.2007.05.017.

    Article  CAS  Google Scholar 

  2. J. Kopecek. Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20(1):1–16 (2003). doi:10.1016/S0928-0987(03)00164-7.

    Article  PubMed  CAS  Google Scholar 

  3. C. C. Lin, and A. T. Metters. Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13):1379–1408 (2006). doi:10.1016/j.addr.2006.09.004.

    Article  PubMed  CAS  Google Scholar 

  4. K. R. Kamath, and K. Park. Biodegradable hydrogels in drug-delivery. Adv. Drug Deliv. Rev. 11(1–2):59–84 (1993). doi:10.1016/0169-409X(93)90027-2.

    Article  CAS  Google Scholar 

  5. N. A. Peppas, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18(11):1345–1360 (2006). doi:10.1002/adma.200501612.

    Article  CAS  Google Scholar 

  6. J. D. Kretlow, L. Klouda, and A. G. Mikos. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 59(4–5):263–273 (2007). doi:10.1016/j.addr.2007.03.013.

    Article  PubMed  CAS  Google Scholar 

  7. L. G. Griffith. Polymeric biomaterials. Acta. Mater. 48(1):263–277 (2000). doi:10.1016/S1359-6454(99)00299-2.

    Article  CAS  Google Scholar 

  8. B. D. Ratner, and S. J. Bryant. Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75 (2004). doi:10.1146/annurev.bioeng.6.040803.140027.

    Article  PubMed  CAS  Google Scholar 

  9. A. S. Sawhney, C. P. Pathak, and J. A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules. 26(4):581–587 (1993). doi:10.1021/ma00056a005.

    Article  CAS  Google Scholar 

  10. D. G. Anderson, et al. A combinatorial library of photocrosslinkable and degradable materials. Adv. Mater. 18(19):2614–2618 (2006). doi:10.1002/adma.200600529.

    Article  CAS  Google Scholar 

  11. D. M. Brey, I. Erickson, and J. A. Burdick. Influence of macromer molecular weight and chemistry on poly(beta-amino ester) network properties and initial cell interactions. J. Biomed. Mater. Res. Part A. 85A(3):731–741 (2008). doi:10.1002/jbm.a.31494.

    Article  CAS  Google Scholar 

  12. N. Harris, M. J. Ford, and M. B. Cortie. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem., B. 110(22):10701–10707 (2006). doi:10.1021/jp0606208.

    Article  CAS  Google Scholar 

  13. I. K. Tjahjono, and Y. Bayazitoglu. Near-infrared light heating of a slab by embedded nanoparticles. Int. J. Heat Mass Transfer. 51(7–8):1505–1515 (2008). doi:10.1016/j.ijheatmasstransfer.2007.07.047.

    Article  Google Scholar 

  14. R. A. Frimpong, S. Fraser, and J. Z. Hilt. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J. Biomed. Mater. Res. Part A. 80A(1):1–6 (2007). doi:10.1002/jbm.a.30962.

    Article  CAS  Google Scholar 

  15. N. S. Satarkar, and J. Z. Hilt. Hydrogel nanocomposites as remote-controlled biomaterials. Acta. Biomaterialia. 4(1):11–16 (2008). doi:10.1016/j.actbio.2007.07.009.

    Article  PubMed  CAS  Google Scholar 

  16. N. S. Satarkar, and J. Z. Hilt. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control. Release. 130(3):246–251 (2008). doi:10.1016/j.jconrel.2008.06.008.

    Article  PubMed  CAS  Google Scholar 

  17. L. L. Lao, and R. V. Ramanujan. Magnetic and hydrogel composite materials for hyperthermia applications. J. Mater. Sci., Mater. Med. 15(10):1061–1064 (2004). doi:10.1023/B:JMSM.0000046386.78633.e5.

    Article  CAS  Google Scholar 

  18. R. Hergt, et al. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys., Condens. Matter. 18(38):S2919–S2934 (2006). doi:10.1088/0953-8984/18/38/S26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based in part on work supported by the National Science Foundation through an NSF IGERT traineeship and CTS-0609117 (NSF NIRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zach Hilt.

Appendix

Appendix

Table I Macromer Characterization
Table II Rate Constant and Activation Energy Values
Table III Rate Constant and Activation Energy Values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, A.M., Satarkar, N.S. & Hilt, J.Z. Nanocomposite Degradable Hydrogels: Demonstration of Remote Controlled Degradation and Drug Release. Pharm Res 26, 667–673 (2009). https://doi.org/10.1007/s11095-008-9804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9804-z

KEY WORDS

Navigation