Skip to main content
Log in

Determination of the Relative Bioavailability of Salbutamol to the Lungs Following Inhalation from Dry Powder Inhaler Formulations Containing Drug Substance Manufactured by Supercritical Fluids and Micronization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The relative lung bioavailability of salbutamol sulfate particles produced using supercritical fluids (SEDS™) and delivered by dry powder inhaler (DPI) was compared with the performance of a conventional micronized drug DPI using the same device design (Clickhaler™, Innovata Biomed).

Materials and Methods

Twelve healthy volunteers and 11 mild asthmatic patients completed separate four-way randomised cross-over studies, assessing the relative bioavailability of salbutamol sulfate (urinary excretion method), formulated as SEDS™ particles (three batches) and micronized particles (Asmasal™ inhaler, UCB Pharma Ltd). Post-treatment improvements in patient lung function were assessed by measuring FEV1. Physicochemical evaluation of the three SEDS™ batches revealed inter-batch differences in particle size and shape.

Results

There was no significant difference in the relative lung bioavailability of salbutamol and its bronchodilator response between the best performing SEDS™ formulation and the Asmasal™ inhaler in volunteers and patients, respectively. SEDS™ salbutamol sulfate showing wafer like morphology gave greater fine particle dose, relative lung bioavailability and enhanced bronchodilation compared to other SEDS™ batches containing elongated particles.

Conclusions

Active Pharmaceutical Ingredient (API) manufactured using supercritical fluids and delivered by DPI can provide similar lung bioavailability and clinical effect to the conventional micronized commercial product. Product performance is however notably influenced by inter-batch differences in particle characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACI:

Andersen cascade impactor

ANOVA:

Analysis of variance

API:

Active pharmaceutical ingredient

DPI (s):

Dry powder inhaler(s)

FEV1 :

Forced expiratory volume in 1 s

FPD:

Fine particle dose

GSD:

Geometric standard deviation

HPLC:

High performance liquid chromatography

MMAD:

Mass median aerodynamic diameter

RSD:

Relative standard deviation

SD:

Standard deviation

SEDS™:

Solution enhanced dispersion by supercritical fluids

SEM:

Scanning electron microscopy

TOF:

Time of flight

References

  1. C. Varsha, and R. Dalby. Novel system to investigate the effects of inhaled volume and rates of rise in simulated inspiratory airflow on fine particle output from a dry powder inhaler. Pharm. Sci. [online computer file] 4(2): (2002).

  2. M. R. Feddah, K. F. Brown, E. M. Gipps, and N. M. Davies. In vitro characterisation of metered dose inhaler versus dry powder inhaler glucocorticoid products: influence of inspiratory flow rates. J. Pharm. Pharmaceut. Sci. 3(3):317–324 (2000).

    CAS  Google Scholar 

  3. A. H. de Boer, P. Hagedoorn, D. Gjaltema, J. Goede, K. D. Kussendrager, and H. W. Frijink. Air classifier technology (ACT) in dry powder inhalation Part 2. The effect of lactose carrier surface properties on the drug-to-carrier interaction in adhesive mixtures for inhalation. Int. J. Pharm. 260(2):201–216 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. F. Podczeck. The influence of particle size distribution and surface roughness of carrier particles on the in vitro properties of dry powder inhalations. Aerosol Sci. Tech. 31:301–321 (1999).

    Article  CAS  Google Scholar 

  5. G. Buckton, A. Choularton, A. E. Beezer, and S. M. Chatham. The effect of comminution technique on the surface energy of a powder. Int. J. Pharm. 47(1–3):121–128 (1988).

    Article  CAS  Google Scholar 

  6. G. H. Ward, and R. K. Schultz. Process induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm. Res. 12(5):773–779 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. H. Steckel, and H. G. Brandes. A novel spray-drying technique to produce low density particles for pulmonary delivery. Int. J. Pharm. 278:187–195 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. J. M. Lobo, H. Schiavone, S. Palakodaty, P. York, A. Clark, and S. T. Tzannis. SCF-Engineered powders for delivery of budesonide from passive DPI devices. J. Pharm. Sci. 94(10):2276–2288 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. H. Schiavone, S. Palakodaty, A. Clark, P. York, and S. T. Tzannis. Evaluation of SCF-Engineered particle-based lactose blends in passive dry powder inhalers. Int. J. Pharm. 281:55–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. R. O. Williams III, J. Brown, and J. Liu. Influence of micronization method on the performance of a suspension triamcinolone acetonide pressurized metered-dose inhaler formulation. Pharm. Dev. Technol. 4(2):167–169 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. A. J. Hickey, and T. B. Martonen. Behaviour of hygroscopic pharmaceutical aerosols and the influence of hydrophobic additives. Pharm. Res. 10(1):1–7 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. P. H. Hirst, G. R. Pitcairn, J. G. Weers, T. E. Tarara, A. Clark, L. A. Dellamary, G. Hall, J. Shorr, and S. P. Newman. In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharm. Res. 19(3):258–264 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. H. Lahrib, G. P. Martin, C. Marriot, and D. Prime. The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int. J. Pharm. 257(1–2):283–296 (2003).

    Article  CAS  Google Scholar 

  14. R. M. Auty, K. Brown, M. G. Neale, and P. D. Snashall. Respiratory tract deposition of sodium cromoglycate is highly dependent upon technique of inhalation using the spinhaler. Br. J. Dis. Chest. 81:371–380 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. S. Pederson, and G. Stefferson. Fenoterol powder inhaler technique in children: influence of inspiratory flow rate and breath-holding. Eur. J. Respir. Dis. 68:201–214 (1986).

    Google Scholar 

  16. M. Parry-Billings, R. N. Boyes, L. M. Clisby, P. Braithwaite, S. Williams, and A. E. Harper. Design, development and performance of a novel multidose dry powder inhaler. Pharm. Technol. 23:70–81 (1999).

    Google Scholar 

  17. J. Barrowcliffe, P. McGlynn, S. Tickle, F. Sandbank, and T. Wong. The In vitro evaluation of a novel multi-dose dry powder inhaler. Drug Delivery Lungs 7:82–85 (1996).

    Google Scholar 

  18. M. Parry-Billings, C. Birrell, L. Oldham, and C. O’Callaghan. Inspiration flow rate through a dry powder inhaler (Clickhaler™) in children with asthma. Pediatr. Pulmonol. 35:220–226 (2003).

    Article  PubMed  Google Scholar 

  19. N. Nantel, and M. T. Newhouse. Inspiratory flow rates through a novel dry powder inhaler (Clickhaler) in pediatric patients with Asthma. J. Aerosol Med. 12(2):55–58 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. M. Hindle, and H. Chrystyn. Determination of the relative bioavailability of salbutamol to the lung following inhalation. Br. J. Clin. Pharmacol. 34:311–315 (1992).

    PubMed  CAS  Google Scholar 

  21. M Hindle, and P. R. Byron. Dose emissions from marketed dry powder inhalers. Int. J. Pharm. 116:169–177 (1995).

    Article  CAS  Google Scholar 

  22. V. L. Silkstone, H. S. Tomlinson, S. A. Corlett, and H. Chrystyn. Relative bioavailability of salbutamol to the lung following inhalation when administration is prolonged. Br. J. Clin. Pharm. 50(3):281–284 (2000).

    Article  CAS  Google Scholar 

  23. B. J. Lipworth, and D. J. Clark. Effect of airway calibre on lung delivery of nebulised salbutamol. Thorax 52:1036–1039 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. O. S. Usmani, M. F. Biddiscombe, and P. J. Barnes. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am. J. Resp. Crit. Care Med. 172:1497–1504 (2005).

    Article  PubMed  Google Scholar 

  25. J. Nazir, D. J. Barlow, M. J. Lawrence, C. J. Richardson, and I. Shrubb. Artificial neural network prediction of aerosol deposition in human lungs. Pharm. Res. 19(8):1130–1136 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. J. Nazir, M. J. Lawrence, and I. Shrubb. Artificial neural network prediction of the patterns of deposition of polydisperse aerosols within human lungs. J. Pharm. Sci. 94(9):1986–1997 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. B. O. Stuart. Deposition of inhaled aerosols. Arch. Intern. Med. 131:60–73 (1973).

    Article  PubMed  CAS  Google Scholar 

  28. J. C. Feeley, P. York, B. S. Sumby, and H. Dicks. Determination of surface properties and flow characteristics of salbutamol sulfate before and after micronization. Int. J. Pharm. 172:89–96 (1998).

    Article  CAS  Google Scholar 

  29. F. Podczeck, and Y. Miah. The influence of particle size and shape on the angle of internal friction and the flow factor of unlubricated and lubricated powders. Int. J. Pharm. 144(2):187–194 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) in the UK for funding this research jointly through a case award with GlaxoSmithKline (GSK). We would also like to thank DMV, GSK, Nektar Therapeutics, ML Laboratories and Medeva Pharmaceutical Ltd for supply of materials and componentry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel de Matas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, C.H., de Matas, M., Hosker, H. et al. Determination of the Relative Bioavailability of Salbutamol to the Lungs Following Inhalation from Dry Powder Inhaler Formulations Containing Drug Substance Manufactured by Supercritical Fluids and Micronization. Pharm Res 24, 2008–2017 (2007). https://doi.org/10.1007/s11095-007-9328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9328-y

Key words

Navigation