Skip to main content
Log in

Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To examine the involvement of human SMCT1, a Na+-coupled transporter for short-chain fatty acids, in the transport of nicotinate/structural analogs and monocarboxylate drugs, and to analyze its expression in mouse intestinal tract.

Materials and Methods

We expressed human SMCT1 in X. laevis oocytes and monitored its function by [14C]nicotinate uptake and substrate-induced inward currents. SMCT1 expression in mouse intestinal tract was examined by immunofluorescence.

Results

[14C]Nicotinate uptake was several-fold higher in SMCT1-expressing oocytes than in water-injected oocytes. The uptake was inhibited by short-chain/medium-chain fatty acids and various structural analogs of nicotinate. Exposure of SMCT1-expressing oocytes to nicotinate induced Na+-dependent inward currents. Measurements of nicotinate flux and associated charge transfer into oocytes suggest a Na+:nicotinate stoichiometry of 2:1. Monocarboxylate drugs benzoate, salicylate, and 5-aminosalicylate are also transported by human SMCT1. The transporter is expressed in the small intestine as well as colon, and the expression is restricted to the lumen-facing apical membrane of intestinal and colonic epithelial cells.

Conclusions

Human SMCT1 transports not only nicotinate and its structural analogs but also various monocarboxylate drugs. The transporter is expressed on the luminal membrane of the epithelial cells lining the intestinal tract. SMCT1 may participate in the intestinal absorption of monocarboxylate drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Miyauchi, E. Gopal, Y. J. Fei, and V. Ganapathy. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids. J. Biol. Chem. 279:13293–13296 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Coady, M. H. Chang, F. M. Charron, C. Plata, B. Wallendorff, J. F. Sah, S. D. Markowitz, M. F. Romero, and J. Y. Lapointe. The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J. Physiol. 557:719–731 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. E. Gopal, Y. J. Fei, M. Sugawara, S. Miyauchi, L. Zhuang, P. M. Martin, S. B. Smith, P. D. Prasad, and V. Ganapathy. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J. Biol. Chem. 279:44522–44532 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. H. Li, L. Myeroff, D. Smiraglia, M. F. Romero, T. P. Pretlow, L. Kasturi, J. Lutterbaugh, R. M. Rerko, G. Casey, J. P. Issa, J. Willis, J. K. Willson, C. Plass, and S. D. Markowitz. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc. Natl. Acad. Sci. U. S. A. 100:8412–8417 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. V. Ganapathy, E. Gopal, S. Miyauchi, and P. D. Prasad. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans. 33:237–240 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. N. Gupta, P. M. Martin, P. D. Prasad, and V. Ganapathy. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 78:2419–2425 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. M. Thangaraju, S. Ananth, P. M. Martin, P. Roon, S. B. Smith, E. Sterneck, P. D. Prasad, and V. Ganapathy. c/ebpd null mouse as a model for the double-knockout of slc5a8 and slc5a12 in kidney. J. Biol. Chem. 281:26769–26773 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. P. M. Martin, E. Gopal, S. Ananth, L. Zuang, S. Itagaki, B. M. Prasad, S. B. Smith, P. D. Prasad, and V. Ganapathy. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J. Neurochem. 98:279–288 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. R. L. Veech, B. Chance, Y. Kashiwaya, H. A. Lardy, and G. F. Cahill, Jr. Ketone bodies, potential therapeutic uses. IUBMB Life 51:241–247 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. K. Casteels and C. Mathieu. Diabetic ketoacidosis. Rev. Endocr. Metab. Disord. 4:159–166 (2003).

    Article  PubMed  Google Scholar 

  11. A. M. Rodriguez, B. Perron, L. Lacroix, B. Caillou, G. Leblanc, M. Schlumberger, J. M. Bidart, and T. Pourcher. Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. J. Clin. Endocrinol. Metab. 87:3500–3503 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. V. Paroder, S. R. Spencer, M. Paroder, D. Arango, S. Schwartz, Jr., J. M. Mariadason, L. H. Augenlicht, S. Eskandari, and N. Carrasco. Na+/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT. Proc. Natl. Acad. Sci. U. S. A. 103:7270–7275 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. E. Gopal, Y. J. Fei, S. Miyauchi, L. Zhuang, P. D. Prasad, and V. Ganapathy. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem. J. 388:309–316 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. S. Itagaki, E. Gopal, L. Zuang, Y. J. Fei, S. Miyauchi, P. D. Prasad, and V. Ganapathy. Interaction of ibuprofen and other structurally related NSAIDs with the sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8). Pharm. Res. 23:1209–1216 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. H. Wang, Y. J. Fei, R. Kekuda, T. L. Yang-Feng, L. D. Devoe, F. H. Leibach, P. D. Prasad, and V. Ganapathy. Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am. J. Physiol. 278:C1019–C1030 (2000).

    CAS  Google Scholar 

  16. K. Inoue, Y. J. Fei, L. Zhuang, E. Gopal, S. Miyauchi, and V. Ganapathy. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem. J. 378:949–957 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. S. Schuette and R. C. Rose. Renal transport and metabolism of nicotinic acid. Am. J. Physiol. 250:C694–C703 (1986).

    PubMed  CAS  Google Scholar 

  18. K. Inoue, L. Zhuang, D. M. Maddox, S. B. Smith, and V. Ganapathy. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J. Biol. Chem. 277:39469–39476 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. K. Inoue, L. Zhuang, and V. Ganapathy. Human Na+-coupled citrate transporter (NaCT): Primary structure, genomic organization, and transport function. Biochem. Biophys. Res. Commun. 299:465–471 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. K. Inoue, L. Zhuang, D. M. Maddox, S. B. Smith, and V. Ganapathy. Human NaCT, the ortholog of Drosophila Indy, as a novel target for lithium action. Biochem. J. 374:21–26 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. M. Panayatova-Heiermann, D. D. Loo, and E. M. Wright. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270:27099–27105 (1995).

    Article  Google Scholar 

  22. S. Eskandari, D. D. Loo, G. Dai, O. Levy, E. M. Wright, and N. Carrasco. Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272:27230–27238 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. M. D. Regueiro. Diagnosis and treatment of ulcerative colitis. J. Clin. Gastroenterol. 38:733–740 (2004).

    Article  PubMed  Google Scholar 

  24. C. T. Xu, S. Y. Meng, and B. R. Pan. Drug therapy for ulcerative colitis. World J. Gastroenterol. 10:2311–2317 (2004).

    PubMed  CAS  Google Scholar 

  25. R. P. MacDermott. Progress in understanding the mechanisms of action of 5-aminosalicylic acid. Am.J. Gastroenterol. 95:3343–3345 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. J. P. Gisbert, F. Gomollon, J. Mate, and J. M. Pajares. Role of 5-aminosalicylic acid (5-ASA) in treatment of inflammatory bowel disease: a systematic review. Dig. Dis. Sci. 47:471–488 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. B. E. Enerson, and L. R. Drewes. Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. J. Pharm. Sci. 92:1531–1544 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadivel Ganapathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, E., Miyauchi, S., Martin, P.M. et al. Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract. Pharm Res 24, 575–584 (2007). https://doi.org/10.1007/s11095-006-9176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9176-1

Key words

Navigation