Skip to main content

Advertisement

Log in

Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Catalytic gas-phase abatement of air containing 250 ppm of isopropanol (IPA) was carried out with a novel dielectric barrier discharge (DBD) reactor with the inner catalytic electrode made of sintered metal fibers (SMF). The optimization of the reactor performance was carried out by varying the voltage from 12.5 to 22.5 kV and the frequency in the range 200–275 Hz. The performance was significantly improved by modifying SMF with Mn and Co oxide. Under the experimental conditions used, the MnO x /SMF showed a higher activity towards total oxidation of IPA as compared to CoO x /SMF and SMF electrodes. The complete destruction of 250 ppm of IPA was attained with a specific input energy of ∼235 J/L using the MnO x /SMF catalytic electrode, whereas, the total oxidation was achieved at 760 J/L. The better performance of the MnO x /SMF compared to other catalytic electrodes suggests the formation of short-lived active species on its surface by the in-situ decomposition of ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. http://www.cdc.gov/niosh/npg/npgd0359.html NIOSH Pocket guide to chemical Hazards, 151 2005

  2. Pollution prevention and abatement handbook, World Bank Group (1998) 302

  3. AWMA (1992) Air and waste management association, Air pollution engineering manual, Van Nostrand Reinhold. New York

    Google Scholar 

  4. Gallardo-Amores JM, Armaroli T, Ramis G, Finocchio E, Busca G (1999) Appl Catal B Environ 22:249

    Article  Google Scholar 

  5. John Zink Company (1991) Innovations of catalytic combustion. International symposium on environmental control of combustion processes. Honolulu

  6. Futamura S, Einaga H, Kabashima H, Hwan LY (2004) Catal Today 89:89

    Article  Google Scholar 

  7. Roland U, Holzer F, Kopinke FD (2002) Catal Today 73:315

    Article  Google Scholar 

  8. Futamura S, Zhang A, Prieto G, Yamamoto T (1998) IEEE Trans Ind Appl 34:967

    Article  Google Scholar 

  9. Kim HH, Oh SM, Ogata A, Futamura S (2005) Appl Catal B: Environ 56:213

    Article  Google Scholar 

  10. Ayrault C, Barrault J, Blin-Simiand N, Jorand F, Pasquiers S, Rousseau A, Tatibouet JM (2004) Catal Today 89:75

    Article  Google Scholar 

  11. Eliasson B, Kogelschatz U (1991) IEEE Trans Ind Appl 19:1063

    Google Scholar 

  12. Yhang K, Eliasson B, Kogelschatz U (2002) Ind Eng Chem Res 41:1462

    Article  Google Scholar 

  13. Kogelschatz U (2003) Plasma Chem Plasma Proc 23:1

    Article  Google Scholar 

  14. Holzer F, Roland U, Kopinke FD (2002) Appl Catal B: Evniron 38:163

    Article  Google Scholar 

  15. Roland U, Holzer F, Kopinke F.D (2005) Appl Catal B: Environ 58:217

    Article  Google Scholar 

  16. Roland U, Holzer F, Kopinke FD (2005) Appl Catal B: Environ 58:227

    Article  Google Scholar 

  17. Coogan JJ, Technologie Transfer # 97023244A-ENG, LANL, Feb. 1997

  18. Falkenstein Z (1997) J Adv Oxid Technol 2:223

    Google Scholar 

  19. Oda T, Yamashita R, Takahashi T, Masuda S (1996) IEEE Trans Ind Appl 32:118

    Article  Google Scholar 

  20. Tevault DE (1987) Plasma Chem Plasma Process 7:231

    Article  Google Scholar 

  21. Penetratnte B, Hsiao MC, Bardsley JN, Merrit BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251

    Article  ADS  Google Scholar 

  22. Yamamoto T, Mizuno IK, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G (1996) IEEE Trasn Ind Appl 32:100

    Article  Google Scholar 

  23. Futamura S, Zhang A, Yamamoto T (1997) J Electrostat 42:51

    Article  Google Scholar 

  24. Demidiouk V, Moon SI, Chae JO (2003) Catal Commun 4:51

    Article  Google Scholar 

  25. Ogata A, Mizuno K, Kushiyama S, Yamamoto T (1999) Plasma Chem Plasma Process 19:383

    Article  Google Scholar 

  26. Subrahmanyam Ch, Magureanu M, Kiwi-Minsker L, Renken A (2006) Appl Catal B: Environ 65:150

    Article  Google Scholar 

  27. Subrahmanyam Ch, Kiwi-Minsker L, Renken A (2006) Appl Catal B: Environ 65:157

    Article  Google Scholar 

  28. Dhandapani B, Oyama ST (1997) Appl Catal B: Environ 11:129

    Article  Google Scholar 

  29. Li W, Gibbs GV, Oyama ST (1998) J Am Chem Soc 120:9041

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Swiss National Science Foundation (“SCOPES” program) and the Swiss Commission of Technology and Innovation (CTI, Bern) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kiwi-Minsker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subrahmanyam, C., Renken, A. & Kiwi-Minsker, L. Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol. Plasma Chem Plasma Process 27, 13–22 (2007). https://doi.org/10.1007/s11090-006-9039-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9039-x

Keywords

Navigation