Skip to main content
Log in

Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photonic crystal cavities facilitate novel applications demanding the efficient emission of incoherent light. This unique property arises when combining a relatively high quality factor of the cavity modes with a tight spatial constriction of the modes. While spontaneous emission is desired in these applications the stimulated emission must be kept low. A measure for the spontaneous emission enhancement is the local density of optical states (LDOS). Due to the complicated three dimensional geometry of photonic crystal cavities the LDOS quantity has to be computed numerically. In this work, we present the computation of the LDOS by means of a 3D Finite Element (FE) Maxwell Solver. The solver applies a sophisticated symmetry handling to reduce the problem size and provides perfectly matched layers to simulate open boundaries. Different photonic crystal cavity designs have been investigated for their spontaneous emission enhancement by means of this FE solver. The simulation results have been compared to photoluminescence characterizations of fabricated cavities. The excellent agreement of simulations and characterizations results confirms the performance and the accuracy of the 3D FE Maxwell Solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth M. and Coyle J. (2003). Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Meth. Eng. 58: 2103–2130

    Article  MATH  Google Scholar 

  • Akahane Y., Asano T., Song B.-S. and Noda S. (2003). High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425: 944–947

    Article  ADS  Google Scholar 

  • Alivisatos P. (2004). The use of nanochrystals in biological detection. Nat. Biotechnol. 22: 47–52

    Article  Google Scholar 

  • Berenger J.-P. (1995). A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114: 185–200

    Article  ADS  Google Scholar 

  • Coldren, L.A., Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. John Wiley (1995)

  • Fiore A., Oesterle U., Stanley R.P., Houdré R., Lelarge F., Ilegems M., Borri P., Langbein W., Birkedal D., Hvam J.M., Cantoni M. and Bobard F. (2001). Structural and Electrooptical Characteristics of Quantum Dots Emitting at 1.3μm on Gallium Arsenide. IEEE J. Quantum Elect. 37: 1050–1058

    Article  Google Scholar 

  • Francardi M., Balet L., Gerardino A., Monat C., Zinoni C., Li L.H., Alloing B., Thomas N.L., Houdré R. and Fiore A. (2006). Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photon source. Phys. Status Sol. (c) 3: 3693–3696

    Article  Google Scholar 

  • Golub, G.H., van Loan C.F.: Matrix Computations. The John Hopkins University Press (1989)

  • Henkel C. and Sandoghdar V. (1998). Single-molecule spectroscopy near structured dielectrics. Opt. Commun. 158: 250–262

    Article  ADS  Google Scholar 

  • Imamoglu A. (2003). Are quantum dots useful for quantum computation?. Physica E 16: 47–50

    Article  ADS  Google Scholar 

  • Jackson, J.: Classical Electrodynamics. John Wiley (1975)

  • Jin J.: The Finite Element Method in Electromagnetics, 2nd edn. John Wiley (2002)

  • Joulain K., Carminati R., Mulet J.-P. and Greffet J.-J. (2003). Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68: 245405

    Article  ADS  Google Scholar 

  • Meschede D. (1992). Radiating atoms in confined space: from spontaneous emission to micromasers. Phys. Rep. 211: 201–250

    Article  ADS  Google Scholar 

  • Nédélec J.C. (1986). A New Family of Mixed Finite Elements in IR3’. Numer. Math. 50: 57–81

    Article  MATH  Google Scholar 

  • Purcell E.M., Torrey H.C. and Pound R.V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69: 37–38

    Article  ADS  Google Scholar 

  • Saad Y. and Schultz M.H. (1986). GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 7: 856–869

    Article  MATH  Google Scholar 

  • Schenk, O.: Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multiprocessors. PhD thesis No. 13515, ETH Zürich. (2000)

  • Song B.-S., Noda S., Asano T. and Akahane Y. (2005). Ultra-high-Q photonic double heterostructure nanocavity. Nat. Mat. 4: 207–210

    Article  Google Scholar 

  • Streiff M., Witzig A., Pfeiffer M., Royo P. and Fichtner W. (2003). A Comprehensive VCSEL Device Simulator. IEEE J. Sel. Top. Quant. 9: 879–891

    Article  Google Scholar 

  • Streubel K., Linder N., Wirth R. and Jaeger A. (2002). High brightness AlGaInP light-emitting diodes. IEEE J. Sel. Top. Quant. 8: 312–332

    Google Scholar 

  • Tai, C.T.: Dyadic Green Functions in Electromagnetic Theory. IEEE Press (1994)

  • Teixeira F.L. and Chew W.C. (2000). Complex space approach to perfectly matched layers: a review and some new developments. Int. J. Numer. Model. 13: 441–455

    Article  MATH  Google Scholar 

  • Vučković J., Lončar M., Mabuchi H. and Scherer A. (2002). Optimization of the Q factor in photonic crystal microcavities. IEEE J. Quantum Elect. 38: 850–856

    Article  Google Scholar 

  • Wang L.-W., Kim J. and Zunger A. (1999). Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots. Phys. Rev. B 59: 5678–5687

    Article  ADS  Google Scholar 

  • Witzigmann B., Witzig A. and Fichtner W. (2000). A multidimensional laser simulator for edge-emitters including quantum carrier capture. IEEE T. Electron Dev. 47: 1926–1934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhard Römer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römer, F., Witzigmann, B., Chinellato, O. et al. Investigation of the Purcell effect in photonic crystal cavities with a 3D Finite Element Maxwell Solver. Opt Quant Electron 39, 341–352 (2007). https://doi.org/10.1007/s11082-007-9089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9089-1

Keywords

Navigation