Skip to main content
Log in

The effect of time-delayed feedback controller on an electrically actuated resonator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a study of the effect of a time-delayed feedback controller on the dynamics of a Microelectromechanical systems (MEMS) capacitor actuated as a resonator by DC and AC voltage loads. A linearization analysis is conducted to determine the stability chart of the linearized system equations as a function of the time delay period and the controller gain. Then the method of multiple-scales is applied to determine the response and stability of the system for small vibration amplitude and voltage loads. It is shown that negative time-delay feedback control gain can lead to unstable responses, even if AC voltage is relatively small compared to the DC voltage. On the other hand, positive time delay can considerably strengthen the system stability even in fractal domains. We also show how the controller can be used to control damping in MEMS, increasing or decreasing, by tuning the gain amplitude and delay period. Agreements among the results of a shooting technique, long-time integration, basin of attraction analysis with the perturbation method are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hu, H., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.: Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009)

    Google Scholar 

  3. Erneux, T., Kalmar-Nagy, T.: Nonlinear stability of a delayed feedback controlled container crane. J. Vib. Control 13, 603–616 (2007)

    Article  MATH  Google Scholar 

  4. Kalmar-Nagy, T., Stepan, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kurdi, M.H., Haftka, R.T., Schmitz, T.L., Mann, B.P.: A robust semi-analytical method for calculating the response sensitivity of a time delay system. J. Vib. Acoust. 130, 064504 (2008). doi:10.1115/1.2981093

    Article  Google Scholar 

  6. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  7. Pyragas, K., Pyragas, V., Benner, H.: Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation. Phys. Rev. E 70, 056222 (2004). doi:10.1103/PhysRevE.70.056222

    Article  Google Scholar 

  8. Masoud, Z.N., Daqaq, M.F., Nayfeh, N.A.: Pendulation reduction on small ship-mounted telescopic cranes. J. Vib. Control 10(8), 1167–1179 (2004)

    Article  Google Scholar 

  9. Nayfeh, A.H., Nayfeh, N.A.: Time-delay feedback control of lathe cutting tools. J. Vib. Control 18, 1106–1115 (2012)

    Article  MathSciNet  Google Scholar 

  10. Nakajima, H., Ueda, Y.: Half-period delayed feedback control for dynamical systems with symmetries. Phys. Rev. E 58, 1757–1763 (1998)

    Article  Google Scholar 

  11. Yamasue, K., Hikihara, T.: Persistence of chaos in a time-delayed-feedback controlled Duffing system. Phys. Rev. E 73, 036209 (2006). doi:10.1103/PhysRevE.73.036209

    Article  Google Scholar 

  12. Yamasue, K., Hikihara, T.: Control of microcantilevers in dynamic force microscopy using time delayed feedback. Rev. Sci. Instrum. 77, 053703 (2006). doi:10.1063/1.2200747

    Article  Google Scholar 

  13. Hikihara, T., Kawagoshi, T.: An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos. Phys. Lett. A 211, 29–36 (1996)

    Article  Google Scholar 

  14. Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998)

    Article  MATH  Google Scholar 

  15. Wang, Z.H., Hu, H.Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vib. 233, 215–233 (2000)

    Article  MATH  Google Scholar 

  16. Wang, H.L., Hu, H.Y., Wang, Z.H.: Global dynamics of a Duffing oscillator with delayed displacement feedback. Int. J. Bifurc. Chaos 14, 2753–2775 (2004)

    Article  MATH  Google Scholar 

  17. Wang, H.L., Hu, H.Y.: Bifurcation analysis of a delayed dynamic system via method of multiple scales and shooting technique. Int. J. Bifurc. Chaos 15, 425–450 (2005)

    Article  MATH  Google Scholar 

  18. Wang, H.L., Wang, Z.H., Hu, H.Y.: Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedback. Acta Mech. Sin. 20, 426–434 (2004)

    Article  Google Scholar 

  19. Hu, H.Y.: Using delayed state feedback to stabilize periodic motions of an oscillator. J. Sound Vib. 275, 1009–1025 (2004)

    Article  MATH  Google Scholar 

  20. Wang, Z.H., Hu, H.Y.: Stabilization of vibration systems via delayed state difference feedback. J. Sound Vib. 296, 117–129 (2006)

    Article  MATH  Google Scholar 

  21. Hu, H.Y., Wang, Z.H.: Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons Fractals 40, 13–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. El-Bassiouny, A.F.: Fundamental and subharmonic resonances of harmonically oscillation with time delay state feedback. Shock Vib. 13, 65–83 (2006)

    Google Scholar 

  23. El-Bassiouny, A.F.: Vibration control of a cantilever beam with time delay state feedback. Z. Naturforsch. A, J. Phys. Sci. 61, 629–640 (2006)

    Google Scholar 

  24. El-Bassiouny, A.F., El-Kholy, S.: Resonances of a nonlinear single-degree-of-freedom system with time delay in linear feedback control. Z. Naturforsch. A, J. Phys. Sci. 65, 357–368 (2010)

    Google Scholar 

  25. Qaroush, Y., Daqaq, M.F.: Vibration mitigation in multi-degree-of-freedom structural systems using filter-augmented delayed-feedback algorithms. Smart Mater. Struct. 19, 085016 (2010). doi:10.1088/0964-1726/19/8/085016

    Article  Google Scholar 

  26. Daqaq, M.F., Alhazza, K.A., Qaroush, Y.: On primary resonances of weakly nonlinear delay systems with cubic nonlinearities. Nonlinear Dyn. 64, 253–277 (2011)

    Article  MathSciNet  Google Scholar 

  27. Erneux, T.: Strongly nonlinear oscillators subject to delay. J. Vib. Control 16, 1141–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rand, R.H., Suchorsky, M.K., Sah, S.M.: Using delay to quench undesirable vibrations. Nonlinear Dyn. 62, 407–416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hamdi, M., Belhaq, M.: Control of Bistability in a Delayed Duffing Oscillator. Adv. Acoust. Vib. 2012, 872498 (2012)

    Google Scholar 

  30. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics—applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997)

    Article  Google Scholar 

  31. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  32. Alsaleem, F.M., Younis, M.I.: Integrity analysis of electrically actuated resonators with delayed feedback controller. J. Dyn. Syst. Meas. Control 133, 031011 (2011). doi:10.1115/1.4003262

    Article  Google Scholar 

  33. Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010). doi:10.1088/0964-1726/19/3/035016

    Article  Google Scholar 

  34. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)

    Article  Google Scholar 

  35. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  36. Nayfeh, A.H.: The Method of Normal Forms. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  37. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  38. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  39. Daqaq, M.F., Alhazza, K.A., Arafat, H.N.: Non-linear vibrations of cantilever beams with feedback delays. Int. J. Non-Linear Mech. 43, 962–978 (2008)

    Article  MATH  Google Scholar 

  40. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  41. Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica (2013). doi:10.1007/s11012-013-9707-x

    MATH  Google Scholar 

  42. Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(2), 1350026 (2013) (17 pages)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Professor Ali Nayfeh for fruitful discussions on modeling time-delayed systems using perturbation methods. This research has been supported in part by the National Science Foundation (through grant #0846775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Younis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, S., Masri, K.M. & Younis, M.I. The effect of time-delayed feedback controller on an electrically actuated resonator. Nonlinear Dyn 74, 257–270 (2013). https://doi.org/10.1007/s11071-013-0962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0962-0

Keywords

Navigation