Skip to main content

Advertisement

Log in

Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells are capable of differentiating into Schwann-like cells. In this study, we induced human umbilical-cord mesenchymal stem cells (HUMSCs) in vitro into neurospheres constituted by neural stem-like cells, and further into cells bearing strong morphological, phenotypic and functional resemblances with Schwann-like cells. These HUMSC-derived Schwann-like cells, after grafting into the injured area of the rats’ spinal cord injury (SCI), showed a partial therapeutic effect in terms of improving the motor function. Neurotrophin-3 (NT-3) was reported to improve the local microenvironment of the grafted cells, and we, therefore, further tested the effect of Schwann-like cell grafting combined with NT-3 administration at the site of cell transplantation. The results showed that NT-3 administration significantly promoted the survival of the grafted cells in the host-injured area. Significant improvement in rats treated by Schwann-like cell grafting combined with NT-3 administration was demonstrated in the behavioral test as compared with that in animal models received the cell grafting only. These results suggest that transplantation of the Schwann-like cells combined with NT-3 administration may represent a new strategy of stem cell therapy for spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599

    Article  PubMed  Google Scholar 

  2. Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1):117–130

    Article  PubMed  CAS  Google Scholar 

  3. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124

    Article  PubMed  Google Scholar 

  4. Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79(1):15–20

    Article  PubMed  CAS  Google Scholar 

  5. Zhao L, Weir MD, Xu HH (2010) Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials 31(14):3848–3857

    Article  PubMed  CAS  Google Scholar 

  6. Montesinos JJ, Flores-Figueroa E, Castillo-Medina S, Flores-Guzmán P, Hernández-Estévez E, Fajardo-Orduña G, Orozco S, Mayani H (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176

    Article  PubMed  CAS  Google Scholar 

  7. Kunter U, Rong S, Djuric Z, Boor P, Müller-Newen G, Yu D, Floege J (2006) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. J Am Soc Nephrol 17(8):2202–2212

    Article  PubMed  CAS  Google Scholar 

  8. Brundin P, Barbin G, Isacson O, Mallat M, Chamak B, Prochiantz A, Gage FH, Björklund A (1985) Survival of intracerebrally grafted rat dopamine neurons previously cultured in vitro. Neurosci Lett 61(1–2):79–84

    Article  PubMed  CAS  Google Scholar 

  9. Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A (1994) A microtransplantation approach for cell suspension grafting in the rat Parkinson model. A detailed account of the methodology. Neuroscience 63(1):57–72

    Article  PubMed  CAS  Google Scholar 

  10. Lavail MM, Nishikawa S, Duncan JL, Yang H, Matthes MT, Yasumura D, Vollrath D, Overbeek PA, Ash JD, Robinson ML (2008) Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724–735

    Article  PubMed  CAS  Google Scholar 

  11. Zhang S, Zou Z, Jiang X, Xu R, Zhang W, Zhou Y, Ke Y (2008) The therapeutic effects of tyrosine hydroxylase gene transfected hematopoetic stem cells in a rat model of Parkinson’s disease. Cell Mol Neurobiol 28:529–543

    Article  PubMed  Google Scholar 

  12. Zhu R, Xu R, Jiang X, Cai Y, Zou Y, Du M, Qin L (2007) Expression profile of cancer-related genes in human adult bone marrow-derived neural stemlike cells highlights the need for tumorigenicity study. J Neurosci Res 85:3064–3070

    Article  PubMed  CAS  Google Scholar 

  13. Lee MW, Moon YJ, Yang MS, Kim SK, Jang IK, Eom YW, Park JS, Kim HC, Song KY, Park SC, Lim HS, Kim YJ (2007) Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 358(2):637–643

    Article  PubMed  CAS  Google Scholar 

  14. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen TH, Khakhoulina T, Simmons A, Morel P, Trono D (2005) A simple and highly effective method for the stable transduction of uncultured porcine hepatocytes using lentiviral vector. Cell Transplant 14(7):489–496

    Article  PubMed  Google Scholar 

  16. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13(7):343–359

    Article  PubMed  CAS  Google Scholar 

  17. Zhang HT, Cheng HY, Zhang L, Fan J, Chen YZ, Jiang XD, Xu RX (2009) Umbilical cord blood cell-derived neurospheres differentiate into Schwann-like cells. Neuroreport 20(4):354–359

    Article  PubMed  CAS  Google Scholar 

  18. Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223(2):537–547

    Article  PubMed  CAS  Google Scholar 

  19. Lin W, Chen X, Wang X, Liu J, Gu X (2008) Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim 44(1–2):31–40

    Article  PubMed  CAS  Google Scholar 

  20. Cho MS, Hwang DY, Kim DW (2008) Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc 3(12):1888–1894

    Article  PubMed  CAS  Google Scholar 

  21. Andereggen L, Meyer M, Guzman R, Ducray AD, Widmer HR (2009) Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson’s disease. Brain Res 1276:39–49

    Article  PubMed  CAS  Google Scholar 

  22. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y (2005) Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 147(9):985–992 (discussion 992)

    Article  Google Scholar 

  23. Yu Y, Gu S, Huang H, Wen T (2007) Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo. J Neurol Sci 255(1–2):81–86

    Article  PubMed  CAS  Google Scholar 

  24. Bernd P (2008) The role of neurotrophins during early development. Gene Exp 14(4):241–250

    Article  Google Scholar 

  25. Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30901546/H0912) and Natural Science Foundation of Guangdong (No. 9451051501002508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yi-Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan-Wu, G., Yi-Quan, K., Ming, L. et al. Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury. Neurochem Res 36, 783–792 (2011). https://doi.org/10.1007/s11064-011-0402-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0402-9

Keywords

Navigation