Skip to main content
Log in

Lipid Peroxidation was Involved in the Memory Impairment of Carbon Monoxide-induced Delayed Neuron Damage

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO)-induced delayed neuron damage is the serious complication, but the underlying mechanisms are poorly understood. This study was designed to investigate the time-dependent changes of the lipid peroxidation (malondialdehyde, MDA) and antioxidative status (glutathione, GSH; glutathione peroxidase, GSH-Px; glutathione reductase, GR; and anti-reactive oxygen species anti-ROS) in nerve tissues for the possible mechanisms exploration. Adult rats were treated with CO by peritoneal injection, and sacrificed after day 0, 1, 3, 7, 14 and 21 of treatment. The results showed that the step-down latency progressively shortened while the numbers of error increased. Comparing with the level of day 0, MDA levels in serum, cerebral cortex and hippocampus significantly increased on day 1, 3 and 7. The level of GSH increased firstly but then decreased. The activities of GR, GSH-Px, and anti-ROS decreased in serum, cerebral cortex and hippocampus of rats after day 1, 3, 7, 14 and 21. Thus, we concluded that CO-mediated delayed neuron damage might be associated with elevation of lipid peroxidation and reduction of antioxidative status. The time-dependent changes of lipid peroxidation and antioxidative status in serum, cerebral cortex and hippocampus, at least in part, are involved in the toxic effects of CO poisoning on neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kao LW, Nanagas KA (2005) Carbon monoxide poisoning. Med Clin N Am 89:161–1194

    Google Scholar 

  2. Hsiao CL, Kuo HC, Huang CC (2004) Delayed encephalopathy after carbon monoxide intoxication—long-term prognosis and correlation of clinical manifestations and neuroimages. Acta Neurol 13:64–70

    Google Scholar 

  3. Thom SR, Taber RL, Mendiguren II (1995) Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 25:474–480. doi:10.1016/S0196-0644(95)70261-X

    Article  PubMed  CAS  Google Scholar 

  4. Weaver LK, Hopkins RO, Chan KJ (2002) Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 347:1057–1067. doi:10.1056/NEJMoa013121

    Article  PubMed  CAS  Google Scholar 

  5. Weaver LK (1999) Carbon monoxide poisoning. Crit Care Clin 15:297–317. doi:10.1016/S0749-0704(05)70056-7

    Article  PubMed  CAS  Google Scholar 

  6. Thom SR (1993) Function inhibition of Leukocyte b2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol 123:248–256. doi:10.1006/taap.1993.1243

    Article  PubMed  CAS  Google Scholar 

  7. Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199

    Article  PubMed  CAS  Google Scholar 

  8. Piantadosi CA, Zhang J, Levin ED (1997) Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 147:103–114. doi:10.1006/exnr.1997.6584

    Article  PubMed  CAS  Google Scholar 

  9. Brown SD, Piantadosi CA (1992) Recovery of energy metabolism in rat brain after carbon monoxide hypoxia. J Clin Invest 89:666–672

    Article  PubMed  CAS  Google Scholar 

  10. Jenkins A (1993) Introduction: oxidative stress, aging, and exercise. Med Sci Sports Exerc 25:210–212

    PubMed  CAS  Google Scholar 

  11. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic Res 36:1307–1313. doi:10.1080/1071576021000049890

    Article  PubMed  CAS  Google Scholar 

  12. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060. doi:10.1016/S0891-5849(02)00794-3

    Article  PubMed  CAS  Google Scholar 

  13. Zarkovic N (2003) 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 24:81–291

    Google Scholar 

  14. Schulz B, Lindeanu J, Seyfried J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911. doi:10.1046/j.1432-1327.2000.01595.x

    Article  PubMed  CAS  Google Scholar 

  15. Ando S, Kametani H, Osada HM (1987) Delayed memory dysfunction by transient hypoxia, and its prevention with forskolin. Brain Res 405:371–374. doi:10.1016/0006-8993(87)90308-8

    Article  PubMed  CAS  Google Scholar 

  16. Bunnell DE, Horvath SM (1988) Neractive effects of physical work and carbon monoxide on cognitive task performance. Aviat Space Environ Med 59:1133–1138

    PubMed  CAS  Google Scholar 

  17. Nabeshima HT, Katoh A (1991) Effects of successive carbon monoxide exposures on delayed neuronal death in mice under the maintenance of normal body temperature. Biochem Biophys Res 179:836–840. doi:10.1016/0006-291X(91)91893-H

    Article  Google Scholar 

  18. Hiramatsu M (1994) Experimental techniques for developing new drugs acting on dementia (6)—carbon monoxide-induced amnesia model in experimental animals. J Psychopharmacol 14:305–313

    CAS  Google Scholar 

  19. Nabeshima T, Katoh A, Ishimaru H (1991) Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice. J Pharmacol Exp Ther 56:378–384

    Google Scholar 

  20. Nabeshima T, Yoshida S, Morinaka H, Kameyama T, Thurkauf A, Rice KC, Jacobson AE, Monn JA, Cho AK (1990) MK-801 ameliorates delayed amnesia, but potentiates acute amnesia induced by CO. Neurosci Lett 108:321–327

    Article  PubMed  CAS  Google Scholar 

  21. Zhang H, Han T, Yu CH (2007) Ameliorating effects of essential oil from Acori graminei rhizoma on learning and memory in aged rats and mice. J Pharm Pharmacol 59:301–309. doi:10.1211/jpp.59.2.0016

    Article  PubMed  CAS  Google Scholar 

  22. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666. doi:10.1016/S0025-326X(01)00060-1

    Article  PubMed  CAS  Google Scholar 

  23. Reddy DS, Kulkarni SK (1998) Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilipine-induced learning impairment. Brain Res 99:215–229. doi:10.1016/S0006-8993(98)00419-3

    Article  Google Scholar 

  24. Raghavendra V, Chopra K, Kulkarni SK (1999) Brain renin angiotensin system (RAS) in stress-induced analgesia and impaired retention. Peptides 20:335–342. doi:10.1016/S0196-9781(99)00040-6

    Article  PubMed  CAS  Google Scholar 

  25. Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32:S22–S27. doi:10.1002/ana.410320706

    Article  PubMed  CAS  Google Scholar 

  26. Ishihara I, Minami Y, Nishizaki T (2000) Activation of calpain precedes morphological alterations during hydrogen peroxide-induced apoptosis in neuronally differentiated mouse embryonal carcinoma P19 cell line. Neurosci Lett 279:97–100

    Article  PubMed  CAS  Google Scholar 

  27. Choi D (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6:667–672. doi:10.1016/S0959-4388(96)80101-2

    Article  PubMed  CAS  Google Scholar 

  28. Keller JN, Kindy MS, Holtsberg FW (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    PubMed  CAS  Google Scholar 

  29. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. doi:10.1126/science.7901908

    Article  PubMed  CAS  Google Scholar 

  30. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:609–623. doi:10.1111/j.1471-4159.1992.tb10990.x

    Article  Google Scholar 

  31. Bhattachsrya S, Ghosal SK (2001) Anti-oxidant effect of withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74:1–6. doi:10.1016/S0378-8741(00)00309-3

    Article  Google Scholar 

  32. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14. doi:10.1097/00004647-200101000-00002

    Article  PubMed  CAS  Google Scholar 

  33. Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45:443–452. doi:10.1016/j.freeradbiomed.2008.04.038

    Article  PubMed  CAS  Google Scholar 

  34. Rivera F, Costa G, Abin A (2008) Eduction of ischemic brain damage and increase of glutathione by a liposomal preparation of quercetin in permanent focal ischemia in rats. Neurotox Res 13:105–114

    Article  PubMed  CAS  Google Scholar 

  35. Poon HF, Shepherd HM, Reed TT (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27:1020–1034. doi:10.1016/j.neurobiolaging.2005.05.014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Fu Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zeng, T., Zhang, CL. et al. Lipid Peroxidation was Involved in the Memory Impairment of Carbon Monoxide-induced Delayed Neuron Damage. Neurochem Res 34, 1293–1298 (2009). https://doi.org/10.1007/s11064-008-9908-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9908-1

Keywords

Navigation