Skip to main content

Advertisement

Log in

Stem Cell Markers in Gliomas

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gliomas are the most common tumours of the central nervous system (CNS) and a frequent cause of mental impairment and death. Treatment of malignant gliomas is often palliative because of their infiltrating nature and high recurrence. Genetic events that lead to brain tumours are mostly unknown. A growing body of evidence suggests that gliomas may rise from cancer stem cells (CSC) sharing with neural stem cells (NSC) the capacity of cell renewal and multipotency. Accordingly, a population of cells called “side population” (SP), which has been isolated from gliomas on the basis of their ability to extrude fluorescent dyes, behaves as stem cells and is resistant to chemotherapeutic treatments. This review will focus on the expression of the stem cell markers nestin and CD133 in glioma cancer stem cells. In addition, the possible role of Platelet Derived Growth Factor receptor type α (PDGFR-α) and Notch signalling in normal development and tumourigenesis of gliomas are also discussed. Future work elucidating the mechanisms that control normal development will help to identify new cancer stem cell-related genes. The identification of important markers and the elucidation of signalling pathways involved in survival, proliferation and differentiation of CSCs appear to be fundamental for developing an effective therapy of brain tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garden AS, Maor MH, Yung WK et al (1991) Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol 20:99–110

    Article  PubMed  CAS  Google Scholar 

  2. Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from CNS. Annu Rev Neurosci 18:159–192

    Article  PubMed  CAS  Google Scholar 

  3. Loeffler M, Potten CS (1997) Stem-like cells and cellular pedigrees, a conceptual introduction. In: Potten CS (ed) Stem cells. London, Academic Press, Inc., pp 1–27

    Chapter  Google Scholar 

  4. Gritti A, Vescovi AL, Galli R (2002) Adult neural stem cells: plasticity and developmental potential. J Physiol 96:81–90

    CAS  Google Scholar 

  5. Gould E, Tanapat P, McEwen BS et al (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  PubMed  CAS  Google Scholar 

  6. Eriksson PS, Perfilieva E, Björk-Eriksson T et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Google Scholar 

  7. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  8. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061

    PubMed  CAS  Google Scholar 

  9. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al (2006) PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signalling. Neuron 51:187–199

    Article  PubMed  CAS  Google Scholar 

  10. Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:1–20

    Article  Google Scholar 

  11. Lim DA, Alvarez-Buylla A (2001) Glial characteristics of adult subventricular zone stem cells. In: Rao MS (ed) Stem cells in CNS development. Humana Press, Towton, NJ, pp 71–92

    Chapter  Google Scholar 

  12. Parras CM, Galli R, Britz O et al (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 23:4495–4505

    Article  PubMed  CAS  Google Scholar 

  13. Coskum V, Wu H, Blanchi B et al (2008) CD133 neural stem cells in the ependymal of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031

    Article  Google Scholar 

  14. Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  15. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  16. Tu SM, Lin SH, Logothetis CJ (2002) Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol 3:508–513

    Article  PubMed  CAS  Google Scholar 

  17. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    Article  PubMed  CAS  Google Scholar 

  18. Laywell ED, Rakic P, Kukekov VG et al (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13889–13894

    Article  Google Scholar 

  19. Nunes MC, Roy NS, Keyoung HM et al (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447

    Article  PubMed  CAS  Google Scholar 

  20. Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  21. Zhenju J, Lenhard R (2006) Telomeres and telomerase in cancer stem cell. Eur J Cancer 42:1197–1203

    Article  Google Scholar 

  22. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  23. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  24. Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  25. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  26. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct ‘‘side population’’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  27. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small population of cancer stem-like cells in the C6 rat glioma cell line. Proc Natl Acad Sci USA 101:781–786

    Article  PubMed  CAS  Google Scholar 

  28. Patrawala L, Calhoun T, Schneider-Broussard R et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res 65(14):6208–6219

    Article  Google Scholar 

  29. Weigmann A, Corbeil D, Hellwig A et al (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94(23):12425–12430

    Article  PubMed  CAS  Google Scholar 

  30. Kania G, Corbeil D, Fuchs J et al (2005) Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 23(6):791–804

    Article  PubMed  CAS  Google Scholar 

  31. Shmelkov SV, Jun L, St. Clair R et al (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103(6):2055–2061

    Article  PubMed  CAS  Google Scholar 

  32. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  33. Beier D, Hau P, Proescholdt M et al (2007) CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Sakariassen PO, Tsinkalovsky O et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133+ cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  35. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  36. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  37. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984

    Article  PubMed  CAS  Google Scholar 

  38. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67–78

    Article  PubMed  Google Scholar 

  39. Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64:7183–7190

    Article  PubMed  CAS  Google Scholar 

  40. Ehtesham M, Yuan X, Kabos P et al (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6:287–293

    Article  PubMed  CAS  Google Scholar 

  41. Ehtesham M, Winston JA, Kabos P, Thompson RC (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25(19):2801–2806

    Article  PubMed  CAS  Google Scholar 

  42. Zimmerman L, Parr B, Lendahl U et al (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24

    Article  PubMed  CAS  Google Scholar 

  43. Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765

    Article  PubMed  CAS  Google Scholar 

  44. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  45. Vescovi AL, Reynolds BA, Fraser DD et al (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966

    Article  PubMed  CAS  Google Scholar 

  46. Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  PubMed  CAS  Google Scholar 

  47. Gu H, Wang S, Messam CA, Yao Z (2002) Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res 943:174–180

    Article  PubMed  CAS  Google Scholar 

  48. Holmin S, Almquist P, Lendahl U et al (1997) Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur J NeuroSci 9:65–75

    Article  PubMed  CAS  Google Scholar 

  49. Dahlstrand J, Collins VP, Lendahl U (1992) Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52:5334–5341

    PubMed  CAS  Google Scholar 

  50. Almqvist PM, Mah R, Lendahl U et al (2002) Immunohistochemical detection of nestin in pediatric brain tumors. J Histochem Cytochem 50:147–158

    PubMed  CAS  Google Scholar 

  51. Strojnik T, Røsland GV, Sakariassen PO et al (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68(2):133–143

    Article  PubMed  Google Scholar 

  52. Rutka JT, Ivanchuk S, Mondal S et al (1999) Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. Int J Dev Neurosci 17:503–515

    Article  PubMed  CAS  Google Scholar 

  53. Veselska R, Kuglik P, Cejpek P et al (2006) Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer 6:32–43

    Article  PubMed  Google Scholar 

  54. Thomas SK, Messam CA, Spengler BA et al (2004) Nestin is a potential mediator of malignancy in human neuroblastoma cells. J Biol Chem 279:27994–27999

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura Y, S-I Sakakibara, Miyata T et al (2000) The bHLH gene Hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20:283–293

    PubMed  CAS  Google Scholar 

  56. Hitoshi S, Alexson T, Tropepe V et al (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858

    Article  PubMed  CAS  Google Scholar 

  57. Pringle NP, Mudhar HS, Collarini EJ et al (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115:535–551

    PubMed  CAS  Google Scholar 

  58. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signalling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  59. Hitoshi S, Seaberg RM, Koscik C et al (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signalling. Genes Dev 18:1806–1811

    Article  PubMed  CAS  Google Scholar 

  60. Tanigaki K, Nogaki F, Takahashi J et al (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55

    Article  PubMed  CAS  Google Scholar 

  61. Hojo M, Ohtsuka T, Hashimoto N et al (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522

    PubMed  CAS  Google Scholar 

  62. Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signalling in the murine forebrain. Neuron 26:395–404

    Article  PubMed  CAS  Google Scholar 

  63. Mellodew K, Suhr R, Uwanogho DA et al (2004) Nestin expression is lost in a neural stem cell line through a mechanism involving the proteasome and Notch signalling. Devel Brain Res 151:13–23

    Article  CAS  Google Scholar 

  64. Jang MS, Zlobin A, Kast WM, Miele L (2000) Notch signalling as a target in multimodality cancer therapy. Curr Opin Mol Ther 2(1):55–65

    PubMed  CAS  Google Scholar 

  65. Purow BW, Haque RM, Noel MW et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6):2353–2363

    Article  PubMed  CAS  Google Scholar 

  66. Shih AH, Holland EC (2006) Notch signalling enhances nestin expression in gliomas. Neoplasia 8(12):1072–1082

    Article  PubMed  CAS  Google Scholar 

  67. Kanamori M, Kawaguchi T, Nigro JM et al (2007) Contribution of Notch signalling activation to human glioblastoma multiforme. J Neurosurg 106(3):417–427

    Article  PubMed  Google Scholar 

  68. Zhang XP, Zheng G, Zou L et al (2008) Notch activation promotes cell proliferation and the formation of neural stem-like colonies in human glioma cells. Mol Cell Bioch 307(1–2):101–108

    CAS  Google Scholar 

  69. Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452

    Article  PubMed  CAS  Google Scholar 

  70. Ross R, Glomset J, KariYa L et al (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 71:1207–1210

    Article  PubMed  CAS  Google Scholar 

  71. Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15(4):205–213

    Article  PubMed  CAS  Google Scholar 

  72. Yeh HJ, Silos-Santiago I, Wang YX et al (1993) Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proc Natl Acad Sci USA 90(5):1952–1956

    Article  PubMed  CAS  Google Scholar 

  73. Erlandsson A, Enarsson M, Forsberg-Nilsson K. (2001) Immature neurons from CNS stem cells proliferate in response to Platelet-Derived Growth Factor. J Neurosci 21(10):3483–3491

    PubMed  CAS  Google Scholar 

  74. Oumesmar B, Vignais L, Baron-Van Evercooren A (1997) Developmental expression of platelet-derived growth factor-receptor in neurons and in glial cells of the mouse CNS. J Neurosci 17:125–139

    PubMed  CAS  Google Scholar 

  75. Hermanson M, Funa K, Hartman M et al (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52(11):3213–3219

    PubMed  CAS  Google Scholar 

  76. Lokker NA, Sullivan CM, Hollenbach SJ et al (2002) Platelet-derived growth factor (PDGF) autocrine signalling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62(13):3729–3735

    PubMed  CAS  Google Scholar 

  77. Puputti M, Tynninen O, Sihto H et al (2006) Amplification of KIT, PDGFRA, VEGFR », and EGFR in gliomas. Mol Cancer Res 4(12):927–934

    Article  PubMed  CAS  Google Scholar 

  78. Dai C, Celestino JC, Okada Y et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925

    Article  PubMed  CAS  Google Scholar 

  79. Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232(2):139–147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Mr. Francesco Marino for his helpful work for figure editing. I thank Dr. Maria Vincenza Catania for encouraging and help me to write this review and for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Dell’Albani.

Additional information

Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Albani, P. Stem Cell Markers in Gliomas. Neurochem Res 33, 2407–2415 (2008). https://doi.org/10.1007/s11064-008-9723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9723-8

Keywords

Navigation