Skip to main content

Advertisement

Log in

Chemical Hypoxia Facilitates Alternative Splicing of EAAT2 in Presymptomatic APP23 Transgenic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypoxia is one of the major common components of vascular risk factors for pathogenesis of Alzheimer’s disease. This study investigated the possible relationship between hypoxia and alternative splicing of the excitatory amino acid transporter 2 (EAAT2) in a transgenic model for Alzheimer’s disease. We used an APP23 mouse model prior to amyloid deposition and subjected it to chemical hypoxia treatment as induced by 3-nitropropionic acid. One hour after administration of 3-nitropropionic acid changes in the expression of the 5′-splice forms mEAAT2/5UT3, mEAAT2/5UT4, and mEAAT2/5UT5 were found in the frontal cortex, hippocampus and cerebellum of the APP23 model. In untreated APP23 animals the expression of EAAT2 splice variants was unchanged. Our results demonstrate that hypoxia facilitates alternative splicing of EAAT2 in the APP23 model. This may be a molecular mechanism linking vascular factors to early pathophysiology of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ANOVA:

Analysis of variance

APP:

Amyloid precursor protein

EAAT2:

Excitatory amino acid transporter 2

3-NP:

3-Nitropropionic acid

uORF:

Upstream open reading frame

References

  1. Snowdon DA, Greiner LH, Mortimer JA et al (1997) Brain infarction and the clinical expression of Alzheimer disease. The nun study. JAMA 277:813–817

    Article  PubMed  CAS  Google Scholar 

  2. Altieri M, Di Piero V, Pasquini M et al (2004) Delayed poststroke dementia: a 4-year follow-up study. Neurology 62:2193–2197

    PubMed  CAS  Google Scholar 

  3. Schneider JA, Wilson RS, Cochran EJ et al (2003) Relation of cerebral infarctions to dementia and cognitive function in older persons. Neurology 60:1082–1088

    Article  PubMed  CAS  Google Scholar 

  4. Vermeer SE, Prins ND, den Heijer T et al (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222

    Article  PubMed  Google Scholar 

  5. Honig LS, Kukull W, Mayeux R (2005) Atherosclerosis and AD: analysis of data from the US National Alzheimer’s coordinating center. Neurology 64:494–500

    PubMed  Google Scholar 

  6. Heyman A, Fillenbaum GG, Welsh-Bohmer KA et al (1998) Cerebral infarcts in patients with autopsy-proven Alzheimer’s disease: CERAD, part XVIII. consortium to establish a registry for Alzheimer’s disease. Neurology 51:159–162

    PubMed  CAS  Google Scholar 

  7. Milton ID, Banner SJ, Ince PG et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Mol Brain Res 52:17–31

    Article  PubMed  CAS  Google Scholar 

  8. Li S, Mallory M, Alford M et al (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    PubMed  CAS  Google Scholar 

  9. Gegelashvili G, Robinson MB, Trotti D et al (2001) Regulation of glutamate transporters in health and disease. Prog Brain Res 132:267–286

    Article  PubMed  CAS  Google Scholar 

  10. Masliah E, Alford M, Mallory M et al (2000) Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Exp Neurol 163:381–387

    Article  PubMed  CAS  Google Scholar 

  11. Lauderback CM, Hackett JM, Huang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem 78:413–416

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez-Kern A, Gegelashvili M, Schousboe A et al (2003) Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochem Int 43:363–370

    Article  PubMed  CAS  Google Scholar 

  13. Münch C, Schwalenstöcker B, Hermann C et al (2000) Differential RNA cleavage and polyadenylation of the glutamate transporter EAAT2 in the human brain. Mol Brain Res 80:244–251

    Article  PubMed  Google Scholar 

  14. Berger UV, DeSilva TM, Chen W et al (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89

    Article  PubMed  CAS  Google Scholar 

  15. Rozyczka J, Engele J (2005) Multiple 5′-splice variants of the rat glutamate transporter-1. Brain Res Mol Brain Res 133:157–161

    Article  PubMed  CAS  Google Scholar 

  16. Honig LS, Chambliss DD, Bigio EH et al (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55:1082–1088

    PubMed  CAS  Google Scholar 

  17. Hoogland G, van Oort RJ, Proper EA et al (2004) Alternative splicing of glutamate transporter EAAT2 RNA in neocortex and hippocampus of temporal lobe epilepsy patients. Epilepsy Res 59:75–82

    Article  PubMed  CAS  Google Scholar 

  18. Münch C, Penndorf A, Schwalenstöcker B et al (2001) Impaired RNA splicing of 5′-regulatory sequences of the astroglial glutamate transporter EAAT2 in human astrocytoma. J Neurol Neurosurg Psychiatry 71:675–678

    Article  PubMed  Google Scholar 

  19. Münch C, Zhu BG, Schwalenstöcker B et al (2002) Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem 82:594–603

    Article  PubMed  Google Scholar 

  20. Lauriat TL, Richler E, McInnes LA (2007) A quantitative regional expression profile of EAAT2 known and novel splice variants reopens the question of aberrant EAAT2 splicing in disease. Neurochem Int 50:271–280

    Article  PubMed  CAS  Google Scholar 

  21. Münch C, Zhu BG, Leven A et al (2003) Differential regulation of 5′-splice variants of the glutamate transporter EAAT2 in an in vivo model of chemical hypoxia induced by 3-nitropropionic acid. J Neurosci Res 71:819–825

    Article  PubMed  CAS  Google Scholar 

  22. Bornemann KD, Staufenbiel M (2000) Transgenic mouse models of Alzheimer’s disease. Ann NY Acad Sci 908:260–266

    Article  PubMed  CAS  Google Scholar 

  23. Cavaliere F, D’Ambrosi N, Ciotti MT et al (2001) Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochem Int 38:189–197

    Article  PubMed  CAS  Google Scholar 

  24. Ludolph AC, Seelig M, Ludolph A et al (1992) ATP deficits and neuronal degeneration induced by 3-nitropropionic acid. Ann NY Acad Sci 648:300–302

    Article  PubMed  CAS  Google Scholar 

  25. Sturchler-Pierrat C, Abramowski D, Duke M et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  PubMed  CAS  Google Scholar 

  26. Chen GJ, Xu J, Lahousse SA et al (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228

    PubMed  Google Scholar 

  27. Maracchioni A, Totaro A, Angelini DF et al (2007) Mitochondrial damage modulates alternative splicing in neuronal cells: implications for neurodegeneration. J Neurochem 100:142–153

    Article  PubMed  CAS  Google Scholar 

  28. Pow DV, Naidoo T, Lingwood BE et al (2004) Loss of glial glutamate transporters and induction of neuronal expression of GLT-1B in the hypoxic neonatal pig brain. Brain Res Dev Brain Res 153:1–11

    Article  PubMed  CAS  Google Scholar 

  29. Morrish BC, Rumsby MG (2001) The 5′ UTR of protein kinase C epsilon confers translational regulation in vitro and in vivo. Biochem Biophys Res Commun 283:1091–1098

    Article  PubMed  CAS  Google Scholar 

  30. Yi JH, Pow DV, Hazell AS (2005) Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia 49:121–133

    Article  PubMed  Google Scholar 

  31. Maragakis NJ, Dykes-Hoberg M, Rothstein JD (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the VERUM foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, C., Zhu, Bg., Mink, A. et al. Chemical Hypoxia Facilitates Alternative Splicing of EAAT2 in Presymptomatic APP23 Transgenic Mice. Neurochem Res 33, 1005–1010 (2008). https://doi.org/10.1007/s11064-007-9540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9540-5

Keywords

Navigation