Skip to main content
Log in

Evoked Changes in EEG Band Power on Perception of Consonant and Dissonant Chords

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Few studies have been reported on the effects of music on brain biopotentials. The present investigation addresses the perception of consonant and dissonant chords by humans. Subjectively presented consonant intervals were evaluated as more harmonic and pleasant than dissonant intervals. Analysis of evoked brain activity showed that the perception of dissonant chords was accompanied by activation of the right frontal lobe, which regulates negative emotions, while consonant chords activated the left frontal area, which regulates positive emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Aftanas, A. A. Varlamov, S. V. Pavlov, et al., “Reflection of the signs of emotions in the effects of evoked EEG synchronization and desynchronization,” Ros. Fiziol. Zh., 88, No. 6, 790–802 (2002).

    CAS  Google Scholar 

  2. A. L. Gotsdiner, Musical Psychology [in Russian], MIP Magistr, Moscow (1993), pp. 38–96.

    Google Scholar 

  3. V. P. Morozov, The Wonders of Bioacoustics. Stories of the Language of Emotions in the Animal and Human World [in Russian], Nauka, Moscow (1983), pp. 51–52.

    Google Scholar 

  4. P. V. Simonov, “Functional asymmetry of the frontal neocortex and emotions,” Dokl. Ros. Akad. Nauk., 338, No. 5, 689–692 (1994).

    Google Scholar 

  5. V. B. Strelets, “Mapping of brain biopotentials in emotional and cognitive pathology,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 226–242 (1997).

    CAS  Google Scholar 

  6. L. I. Aftanas and S. A. Golocheikine, “Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation,” Neurosci. Lett., 310, No. 1, 57–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. E. Basar, M. Schurmann, and O. Sakowitz, “The selectively distributed theta system: functions,” Int. J. Psychophysiol., 39, 197–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. R. J. Davidson, D. C. Jackson, and N. H. Nalin, “Emotion, plasticity, context, and regulation: perspectives from affective neuroscience,” Psychol. Bull., 126, 890–909 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. K. Inanaga, “Frontal midline theta rhythm and mental activity,” Psychiatry Clin. Neurosci., 52, 555–566 (1998).

    PubMed  CAS  Google Scholar 

  10. K. Itoh, S. Suwazono, and T. Nakada, “Central auditory processing of noncontextual consonance in music: an evoked potential study,” J. Acoust. Soc. Am., 128, No. 6, 3781–3787 (2010).

    Article  PubMed  Google Scholar 

  11. K. Itoh, S. Suwasono, and T. Nakada, “Central auditory processing of noncontextual consonance in music: an evoked potential study,” J. Acoust. Soc. Am., 128, No. 6, 3781–3787 (2010).

    Article  PubMed  Google Scholar 

  12. I. Fishman and O. Volkov, “Consonance and dissonance of musical chord: neural; correlates in auditory cortex of monkeys and humans,” J. Neurophysiol., 86, 2761–2788 (2001).

    PubMed  CAS  Google Scholar 

  13. E. E. Hannon and S. E. Trehub, “Turning into musical rhythms: infants learn more readily than adults,” Proc. Natl. Acad. Sci. USA, 102, 12639–12643 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. W. Heller, “Neuropsychological mechanisms of individual differences in emotion, personality, and arousal,” Neuropsychology, 7, 476–489 (1993).

    Article  Google Scholar 

  15. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., 29, 169–195 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. E. Kushnerenko, I. Winkler, J. Horvath, et al., “Processing acoustic change and novelty in newborn infants,” Eur. J. Neurosci., 26, 265–274 (2007).

    Article  PubMed  Google Scholar 

  17. K. Lee and E. Skoe, “Selective subcortical enhancement of musical intervals in musicians,” J. Neurosci., 29, No. 18, 5832–3840 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. J. Y. Park, H. Park, and J. Kim, “Consonant chords stimulate higher EEG gamma activity than dissonant chords,” Neurosci. Lett., 488, No. 1, 101–105 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. N. Passynkova, H. Neubauer, and H. Scheich, “Spatial organization of EEG coherence during listening to consonant and dissonant chords,” Neurosci. Lett., 412, neuron 1, 6–11 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. G. Pfurtscheller and F. H. Lopes DC Silva, “Event-related EEG/EMG synchronization and desynchronization. Basic principles,” Clin. Neurophysiol., 110, 1842–1857 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maslennikova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel”nosti imeni I. P. Pavlova, Vol. 62, No. 3, pp. 286–291, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslennikova, A.V., Varlamov, A.A. & Strelets, V.B. Evoked Changes in EEG Band Power on Perception of Consonant and Dissonant Chords. Neurosci Behav Physi 43, 670–673 (2013). https://doi.org/10.1007/s11055-013-9790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9790-4

Keywords

Navigation