Skip to main content

Advertisement

Log in

Possible mechanisms of the formation of chronic fatigue syndrome in the clinical picture of multiple sclerosis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

A frequent manifestation of multiple sclerosis (MS) is chronic fatigue syndrome, which can be defined as a subjective decrease in the level of physical and/or mental energy. Chronic fatigue syndrome can be divided into asthenia (fatigue at rest), pathological fatigability (fatigue on physical loading), and fatigue on the background of deterioration of other symptoms (exacerbation of MS). There are both central and peripheral mechanisms for the formation of fatigue. The combination of fatigue and affective disturbances, especially depression and sleep disorders (insomnia, restless legs syndrome) is common in MS and may provide evidence that they share common mechanisms — decreases in the activity of the serotoninergic and noradrenergic systems. An important component in the formation of chronic fatigue syndrome consists of endocrine and autoimmune factors, the latter having a greater effect on asthenia than on pathological fatigue. Further studies of the pathogenetic mechanisms of the formation of asthenia and pathological fatigue and clarification of their differential diagnostic signs should allow not only a better understanding of the nature of this syndrome, but also better selection of individual treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Avedisova, L. S. Kanaeva, D. F. Ibragimov, and N. V. Lyupaeva, “Non-specific, psychological, and biological predictors of the efficacy of therapy with antidepressants in patients with depressive disorders (analytical review, part 2),” Psikhiat. Psikhofarmakoter., 5, 22–24 (2003).

    Google Scholar 

  2. V. B. Lantsova, L. Sh. Askarova, E. K. Sepp, and I. A. Zavalishin, “The role of acetylcholine receptors in the pathogenesis of autoimmune and neurodegenerative disorders of the nervous system,” Neiroimmunologiya, 1, 80 (2003).

    Google Scholar 

  3. Extrapyramidal Disorders: Handbook of Diagnosis and Treatment [in Russian], V. N. Shtok, I. A. Ivanova-Smolenskaya, and O. S. Levin (eds.), MEDpress-Inform, Moscow (2002).

    Google Scholar 

  4. N. Afari and D. Buchwald, “Chronic fatigue syndrome: A review,” Amer. J. Psychiat., 160, 221–236 (2003).

    Article  PubMed  Google Scholar 

  5. A. K. Afifi and R. A. Bergman, Functional Neuroanatomy, McGraw-Hill, New York (1998).

    Google Scholar 

  6. M. Altemus, I. Licino, L. Iolkovsky, and P. W. Gold, “Stimulation of the hypothalamic-pituital-adrenal axis by bulimic behaviors,” Amer. Psychiatr. Ass., 378 (1992).

  7. R. Bakshi, R. S. Miletich, K. Henschel, et al., “Fatigue in multiple sclerosis: cross-sectional correlation with brain MRI findings in 71 patients,” Neurology, 53, 1151–1155 (1999).

    PubMed  CAS  Google Scholar 

  8. R. Bakshi, Z. A. Shaikh, R. S. Miletich, et al., “Fatigue in multiple sclerosis and its relationship to depression and neurologic disability,” Mult. Scler., 6, 181–185 (2000).

    PubMed  CAS  Google Scholar 

  9. S. A. Brod, G. D. Marshall, E. M. Henninger, et al., “Interferon-beta 1b treatment decreases tumor necrosis factor-alpha and increases interleukin-6 production in multiple sclerosis,” Neurology, 46, 1633–1638 (1996).

    PubMed  CAS  Google Scholar 

  10. D. Buchwald, M. H. Wener, T. Pearlman, et al., “Markers of inflammation and immune activation in chronic fatigue and chronic fatigue syndrome,” J. Rheumatol., 24, 372–376 (1997).

    PubMed  CAS  Google Scholar 

  11. B. Casanova, F. Coret, and L. Landede, “A study of various scales of fatigue and impact on the quality of life among patients with multiple sclerosis,” Rev. Neurol., 30, 1235–1241 (2000).

    PubMed  CAS  Google Scholar 

  12. C. C. Chao, E. N. Janoff, S. X. Hu, et al., “Altered cytokine release in peripheral blood mononuclear cell cultures from patients with chronic fatigue syndrome,” Cytokine, 3, 292–298 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. C. M. Clark, J. A. Fleming, D. Li, et al., “Sleep disturbance, depression, and lesion site in patients with multiple sclerosis,” Arch. Neurol., 49, 641–643 (1992).

    PubMed  CAS  Google Scholar 

  14. R. Cohen and M. Fisher, “Amantadine treatment of fatigue associated with MS,” Arch. Neurol., 46, 676–680 (1989).

    PubMed  CAS  Google Scholar 

  15. B. Colombo, F. M. Boneschi, P. Rossi, et al., “MRI and motor evoked potential findings in nondisabled multiple sclerosis with and without fatigue,” J. Neurol., 247, 506–509 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Craner, A. C. Lo, J. A. Black, et al., “Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination,” Brain, 126, 1552–1561 (2003).

    Article  PubMed  Google Scholar 

  17. M. A. Demitrack, J. K. Dale, S. E. Straus, et al., “Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome,” J. Cin. Endocrinol. Metab., 73, 1224–1234 (1991).

    Article  CAS  Google Scholar 

  18. S. D. M. Drakulic, J. Jevdjic, B. Milicic, et al., “Fatigue in patient with multiple sclerosis: relationship to disease pattern, disability, and depression,” Eur. J. Neurol., 9, Suppl. 2, 321–322 (2002).

    Google Scholar 

  19. R. Du Boistesselin, “Hydrotherapeutics and biophysiological developments. Roles of certain regulatory structures in asthenia: detection of Arcalion binding by histofluorescence,” Gaz. Med., 95, Suppl. 3, 21–24 (1988).

    Google Scholar 

  20. S. Endres et al., “Interleukin-1 in the pathogenesis of fever,” Eur. J. Clin. Invest., 17, 469–474 (1987).

    PubMed  CAS  Google Scholar 

  21. C. Feuerstein, “Neurophysiological data concerning fatigue. Role of activator reticular formation,” Entret. Bichat., Hors-Serie, 11–19 (1992).

  22. M. Filippi, M. A. Rocca, B. Colombo, et al., “Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis,” Neuroimage, 15, 559–567 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. J. D. Fisk, A. Pontefract, P. G. Ritvo, et al., “The impact of fatigue on patients with multiple sclerosis,” Can. J. Neurol. Sci., 21, 9–14 (1994).

    PubMed  CAS  Google Scholar 

  24. P. Flachenecker, A. Wolf, M. Krauser, et al., “Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance,” J. Neurol., 2346, 578–586 (1999).

    Article  Google Scholar 

  25. H. Ford, P. Trigwell, and M. Johnson, “The nature of fatigue in multiple sclerosis,” J. Psychosom. Res., 45, 33–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. J. E. Freal, G. H. Kraft, and J. K. Coryell, “Symptomatic fatigue in multiple sclerosis,” Arch. Phys. Med. Rehabil., 65, 135–138 (1984).

    PubMed  CAS  Google Scholar 

  27. T. Fukuzawa, H. Sasaki, S. Kikuchi, et al., “Serum carnitine and disabling fatigue in multiple sclerosis,” Psychiat. Clin. Neurosci., 50, 323–325 (1996).

    Article  Google Scholar 

  28. C. Gemma, “Activation of the hypothalamic serotoninergic system by central interleukin-1,” Eur. J. Pharmacol., 209, 139–140 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. M. Gottschalk, T. Kumpfel, P. Flachenecker, et al., “Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis,” Arch. Neurol., 62, 277–280 (2005).

    Article  PubMed  Google Scholar 

  30. P. Hautecoeur, G. Forzy, P. Gallois, et al., “Variations of 1L2, 1L6, TNF alpha plasmatic levels in relapsing remitting multiple sclerosis,” Acta Neurol. (Belg.), 97, 240–243 (1997).

    CAS  Google Scholar 

  31. C. Heesen, S. M. Gold, A. Raji, et al., “Cognitive impairment correlates with hypothalamo-pituitary-adrenal axis dysregulation in multiple sclerosis,” Psychoneuroendocrinology, 27, 505–517 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. I. Huitinga, M. van der Cammen, L. Salm, et al., “IL-lβ immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis,” J. Neuroimmun., 107, 8–20 (2000).

    Article  CAS  Google Scholar 

  33. J. Iriarte and P. de Castro, “Correlation between symptom fatigue and muscular fatigue in multiple sclerosis,” Eur. J. Neurol., 5, 579–585 (1998).

    Article  PubMed  Google Scholar 

  34. J. Iriarte, M. L. Subira, and P. Castro, “Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors,” Mult. Scler., 6, 124–130 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. J. A. Kent-Braun, K. R. Sharma, R. G. Miller, et al., “Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis,” Muscle Nerve, 17, 835–841 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. D. C. Kroencke, S. G. Lynch, and D. R. Denney, “Fatigue in multiple sclerosis: relationship to depression, disability, and disease pattern,” Mult. Scler., 6, 131–136 (2000).

    PubMed  CAS  Google Scholar 

  37. L. B. Krupp, L. A. Alvarez, N. G. LaRocca, et al., “Fatigue in multiple sclerosis,” Arch. Neurol., 45, 435–437 (1988).

    PubMed  CAS  Google Scholar 

  38. L. B. Krupp, L. A. Alvarez, N. G. LaRocca, et al., “Fatigue in multiple sclerosis,” Arch. Neurol., 46, 841–842 (1989).

    Google Scholar 

  39. L. B. Krupp, P. K. Doyle, C. Doscher, et al., “Fatigue therapy in multiple sclerosis: Results of a double-blind, randomized, parallel trial of amantadine, pemoline, and placebo,” Neurology, 45, 1956–1961 (1995).

    PubMed  CAS  Google Scholar 

  40. J. F. Kurtzke, “On the evaluation of disability in multiple sclerosis,” Neurology, 2, 686–694 (1961).

    Google Scholar 

  41. E. M. Martinez-Caceres, J. Rio, M. Barrau, et al., “Amelioration of flu-like symptoms at the onset of interferon beta-lb therapy in multiple sclerosis by low-dose oral steroids is related to a decrease in interleukin-6 induction,” Ann. Neurol., 44, 682–685 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. C. J. Mathias, R. Mallipeddi, and K. Bleasdale-Barr, “Symptoms associated with orthostatic hypotension in pure autonomic failure and multiple system atrophy,” J. Neurol., 246, 893–898 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. W. I. McDonald and T. A. Sears, “The effects of experimental demyelination on conduction in the central nervous system,” Brain, 93, 583–598 (1970).

    Article  PubMed  CAS  Google Scholar 

  44. S. Merkelbach, U. Dillman, C. Kölmel, et al., “Cardiovascular autonomic dysregulation and fatigue in multiple sclerosis,” Mult. Scler., 7, 320–326 (2001).

    PubMed  CAS  Google Scholar 

  45. L. M. Metz, S. B. Patten, S. M. Rose, et al., “Multiple sclerosis fatigue is decreased at 6 months by glatiramer acetate (Copaxone),” J. Neurol., 248, Suppl. 2, 115 (2001).

    Google Scholar 

  46. L. M. Metz, S. B. Patten, and C. J. Archibald, “The effect of immunomodulatory treatment on multiple sclerosis fatigue,” J. Neurol. Neurosurg. Psychiat., 75, 1045–1047 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. D. C. Mohr, A. C. Boudewyn, D. E. Goodkin, et al., “Comparative outcomes for individual cognitive-behavior therapy, supportive-expressive group psychotherapy, and sertraline for the treatment of depression in multiple sclerosis,” J. Consult. Clin Psychol., 69, 942–949 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Multiple Sclerosis Council for Clinical Practice Guidelines (1988).

  49. Multiple Sclerosis Therapeutics, R. A. Rudick and D. E. Goodkin (eds.), London (2000).

  50. T. J. Murray, “Amantadine therapy for fatigue in multiple sclerosis,” Can. J. Neurol. Sci., 12, 251–254 (1985).

    PubMed  CAS  Google Scholar 

  51. K. W. Rammohan, J. H. Rosenberg, D. J. Lynn, et al., “Efficacy and safety of modafinil (Provigil) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study,” J. Neurol. Neurosurg. Psychiatr., 72, 179–183 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. A. T. Reder, R. L. Makowiec, and M. T. Lowy, “Adrenal size is increased in multiple sclerosis,” Arch. Neurol., 51, 151–154 (1994).

    PubMed  CAS  Google Scholar 

  53. U. Roelcke, L. Kappos, J. Lechner-Scott, et al., “Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study,” Neurology, 48, 1566–1571 (1997).

    PubMed  CAS  Google Scholar 

  54. G. A. Rosenberg and O. Appenzeller, “Amantadine, fatigue, and multiple sclerosis,” Arch. Neurol., 45, 1104–1106 (1988).

    PubMed  CAS  Google Scholar 

  55. A. Ruger, P. Flachenecker, C. Hippel, et al., “Fatigue in multiple sclerosis is related to dysfunction of the sympathic nervous system,” ENS (Berlin) (2002).

  56. M. A. Schaeffer and A. Baum, “Adrenal cortical response to stress at Three Mile Island,” Psychosom. Med., 46, 175–181 (1984).

    Google Scholar 

  57. C. E. Schwartz, L. Coulthard-Morris, and Q. Zeng, “Psychosocial correlates of fatigue in multiple sclerosis,” Arch. Phys. Med. Rehabil., 77, 165–170 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. S. R. Schmid, M. D. Petrie, M. P. McDermott, et al., “Quantitative assessment of sustained-release 4-aminopyridine for symptomatic treatment of multiple sclerosis,” Neurology, 48, 817–821 (1997).

    Google Scholar 

  59. S. R. Schmid, M. Covington, B. M. Segal, et al., “Fatigue in multiple sclerosis: Current understanding and future directions,” J. Rehabil. Res. Dev., 39, 211–224 (2002).

    Google Scholar 

  60. G. L. Sheean, N. M. Murray, J. C. Rothwell, et al., “An open-labelled clinical and electrophysiological study of 3,4-diaminopyridine in the treatment of fatigue in multiple sclerosis,” Brain, 121, 967–975 (1998).

    Article  PubMed  Google Scholar 

  61. D. F. Swaab, A.-M. Bao, and P. J. Lucassen, “The stress system in the human brain in depression and neurodegeneration,” Ageing Res. Rev., 4, 141–194 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. M. Takamori and S. Okumura, “Presynaptic modulation of neuromuscular transmission by acetylcholine receptor antibody: myasthenic serum and monoclonal antibody produced by transformed lymphocytes,” Neurology, 36, 942–947 (1986).

    PubMed  CAS  Google Scholar 

  63. V. Tomassini, E. Onesti, P. Paseualetti, et al., “Acetyl-L-carnitine treatment of fatigue in multiple sclerosis,” Eur. J. Neurol., 9, Suppl. 2, 3199 (2002).

    Google Scholar 

  64. V. Tomassini, C. Pozzilli, E. Onesti, et al., “Comparison of the effects of acetyl-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: results of a pilot, randomised, double-blind, crossover trial,” J. Neurol. Sci., 218, 103–108 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. S. J. Tzartos, D. Sophianos, and A. Efthimiadis, “Role of the main immunological region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protect against antigenic modulation by human sera,” J. Immunol., 134, 2343–2349 (1985).

    PubMed  CAS  Google Scholar 

  66. W. M. van der Kamp, M. Noordhout, P. O. Thomson, et al., “Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis,” Ann. Neurol., 29, 6–12 (1991).

    Article  PubMed  Google Scholar 

  67. M. Vieren, B. D’Hooghe, and H. Carton, “The use of 5-methoxypsoralen for fatigue and other symptoms in MS,” J. Neuroimmun., 54, 56–63 (1995).

    Google Scholar 

  68. S. G. Waxman, “Clinicopathological correlation in multiple sclerosis and related diseases,” Adv. Neurol., 31, 169–182 (1981).

    PubMed  CAS  Google Scholar 

  69. W. Wieling and J. M. Karemaker, “Measurement of heart rate and blood pressure to evaluate disturbances in neurocardiovascular control, in: Autonomic Failure. A Textbook of Clinical Disorders of the Autonomic Nervous System, C. J. Mathias and R. Bannister (eds.), Oxford University Press, New York, 4th edition (1999).

    Google Scholar 

  70. E. Willoughby, “Modafinil for fatigue in multiple sclerosis,” J. Neurol. Neurosurg. Psychiat., 72, 150 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. S. A. Wulff, E. Calabresi, and A. Allie, “The Kv1.3 potassium channel as a target for multiple sclerosis,” J. Clin. Invest., 111, 1703–1713 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. X. Xu, H. Zhang, H. Guo, et al., “Clinical neuroimmunology,” Adv. Neuroimmunol., 6, No. 3, 249–257 (1996).

    Article  PubMed  CAS  Google Scholar 

  73. R. Yehuda, H. Resnick, G. Kahana, et al., “Long-lasting hormonal alterations to extreme stress in humans: normative or maladaptive,” Psychosom. Med., 55, 287–297 (1993).

    PubMed  CAS  Google Scholar 

  74. A. H. Young, M. Sharpe, A. Clements, et al., “Basal activity of the hypothalamic-pituitary-adrenal axis in patients with the chronic fatigue syndrome (neurasthenia),” Biol. Psychiat., 43, 236–237 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Multiple Sclerosis, Supplement, No. 3, pp. 87–91, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasatkin, D.S., Spirin, N.N. Possible mechanisms of the formation of chronic fatigue syndrome in the clinical picture of multiple sclerosis. Neurosci Behav Physiol 37, 215–219 (2007). https://doi.org/10.1007/s11055-007-0004-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0004-9

Key words

Navigation