Skip to main content
Log in

The effect of alkyl chain length on the level of capping of silicon nanoparticles produced by a one-pot synthesis route based on the chemical reduction of micelle

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silicon nanoparticles (SiNPs) can be synthesized by a variety of methods. In many cases these routines are non-scalable with low product yields or employ toxic reagents. One way to overcome these drawbacks is to use one-pot synthesis based on the chemical reduction of micelles. In the following study trichloroalkylsilanes of differing chain lengths were used as a surfactant, and the level of capping, surface bonding and size of the nanoparticles formed has been investigated. FTIR results show that the degree of alkyl capping for SiNPs with different capping layers was constant, although SiNPs bound with shorter chains display a much higher level of Si–O owing to the reaction of the ethanol used in the method with uncapped sites on the particle. SiNPs with longer chain length capping show a sharp Si–H peak on the FTIR, these were heated at reflux with the corresponding 1-alkene to fully cap these particles, resulting in a reduction/disappearance of this peak with a minimal change in the intensity of the Si–O peak. Other techniques used to analyze the surface bonding and composition, XPS, 1H-NMR, and TEM/EDX, show that alkyl-capped SiNPs have been produced using this method. The optical properties showed no significant changes between the different capped SiNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahire J, Wang Q, Coxon PR, Malhotra G, Brydson RMD, Chen R, Chao Y (2012) Highly luminescent and non-toxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. ACS Appl Mater Interfaces 4:3285–3292

    Article  CAS  Google Scholar 

  • Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5:221–228

    Article  CAS  Google Scholar 

  • Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168–171

    Article  CAS  Google Scholar 

  • Chao Y, Houlton A, Horrocks BR, Hunt MRC, Poolton NRJ, Yang J, Šiller L (2006) Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: origin and temperature dependence of the blue and orange emissions. Appl Phys Lett 88:263119

    Article  Google Scholar 

  • Chao Y, Šiller L, Krishnamurthy S, Coxon PR, Bangert U, Gass M, Kjeldgaard L, Patoleo SN, Lie LH, O’Farrell N, Alsop TA, Houlton A, Horrocks BR (2007) Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum. Nat Nanotechnol 2:486–489

    Article  Google Scholar 

  • Chao Y, Wang Q, Pietzsch A, Hennies F, Ni H (2011) Soft X-ray induced oxidation on acrylic acid grafted luminescent silicon quantum dots in ultrahigh vacuum. Phys Status Solidi A Appl Mat 208:2424–2429

    Article  CAS  Google Scholar 

  • Coxon PR, Wang Q, Chao Y (2011) An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals. J Phys D Appl Phys 44:495301

    Article  Google Scholar 

  • Dickinson FM, Alsop TA, Al-Sharif N, Berger CEM, Datta HK, Siller L, Chao Y, Tuite EM, Houlton A, Horrocks BR (2008) Dispersions of alkyl-capped silicon nanocrystals in aqueous media: photoluminescence and ageing. Analyst 133:1573–1580

    Article  CAS  Google Scholar 

  • Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  CAS  Google Scholar 

  • Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123:3743–3748

    Article  CAS  Google Scholar 

  • Kang Z, Liu Y, Lee S-T (2011) Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale 3:777–791

    Article  CAS  Google Scholar 

  • Kelly JA, Shukaliak AM, Fleischauer MD, Veinot JGC (2011) Size-dependent reactivity in hydrosilylation of silicon nanocrystals. J Am Chem Soc 133:19015–19016

    Article  CAS  Google Scholar 

  • Lie LH, Duerdin M, Tuite EM, Houlton A, Horrocks BR (2002) Preparation and characterisation of luminescent alkylated-silicon quantum dots. J Electroanal Chem 538–539:183–190

    Google Scholar 

  • Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659

    Article  CAS  Google Scholar 

  • Moore D, Krishnamurthy S, Chao Y, Wang Q, Brabazon D, McNally PJ (2011) Characteristics of silicon nanocrystals for photovoltaic applications. Phys Status Solidi A Appl Mat 208:604–607

    Article  CAS  Google Scholar 

  • Neiner D, Chiu HW, Kauzlarich SM (2006) Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J Am Chem Soc 128:11016–11017

    Article  CAS  Google Scholar 

  • Nishiguchi K, Oda S (2002) Ballistic transport in silicon vertical transistors. J Appl Phys 92:1399–1405

    Article  CAS  Google Scholar 

  • O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomed 1:451–472

    Article  Google Scholar 

  • Ostraat ML, de Blauwe JW, Green ML, Bell LD, Brongersma ML, Casperson J, Flagan RC, Atwater HA (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl Phys Lett 79:433–435

    Article  CAS  Google Scholar 

  • Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    Article  CAS  Google Scholar 

  • Pereira RN, Rowe DJ, Anthony RJ, Kortshagen U (2011) Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Phys Rev B 83:155327

    Article  Google Scholar 

  • Pettigrew KA, Liu Q, Power PP, Kauzlarich SM (2003) Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem Mater 15:4005–4011

    Article  CAS  Google Scholar 

  • Reboredo FA, Galli G (2005) Theory of alkyl-terminated silicon quantum dots. J Phys Chem B 109:1072–1078

    Article  CAS  Google Scholar 

  • Rosso-Vasic M, Spruijt E, van Lagen B, de Cola L, Zuilhof H (2008) Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4:1835–1841

    Article  CAS  Google Scholar 

  • Sato S, Swihart MT (2006) Propionic-acid-terminated silicon nanoparticles: äâ synthesis and optical characterization. Chem Mater 18:4083–4088

    Article  CAS  Google Scholar 

  • Shirahata N, Furumi S, Sakka Y (2009) Micro-emulsion synthesis of blue-luminescent silicon nanoparticles stabilized with alkoxy monolayers. J Cryst Growth 311:634–637

    Article  CAS  Google Scholar 

  • Sieval AB, van den Hout B, Zuilhof H, Sudholter EJR (2001) Molecular modeling of covalently attached alkyl monolayers an the hydrogen-terminated Si(111) surface. Langmuir 17:2172–2181

    Article  CAS  Google Scholar 

  • Wallart X, de Villeneuve CH, Allongue P (2005) Truly quantitative XPS characterization of organic monolayers on silicon: study of alkyl and alkoxy monolayers on H–Si(111). J Am Chem Soc 127:7871–7878

    Article  CAS  Google Scholar 

  • Wang J, Sun S, Peng F, Cao L, Sun L (2011a) Efficient one-pot synthesis of highly photoluminescent alkyl-functionalised silicon nanocrystals. Chem Commun 47:4941–4943

    Article  CAS  Google Scholar 

  • Wang Q, Ni H, Pietzsch A, Hennies F, Bao Y, Chao Y (2011b) Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J Nanopart Res 13:405–413

    Article  CAS  Google Scholar 

  • Wang Q, Bao Y, Zhang X, Coxon PR, Jayasooriya UA, Chao Y (2012) Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells. Adv Healthc Mater 1:189–198

    Article  CAS  Google Scholar 

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005a) The synthesis of silicon nanoparticles for biomedical applications. In: Cartwright ANOM (ed) Nanobiophotonics and Biomedical Applications II. SPIE

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005b) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Samara GA (1999) Tailorable, visible light emission from silicon nanocrystals. Appl Phys Lett 74:3164–3166

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704–2714

    Article  CAS  Google Scholar 

  • Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244

    Article  CAS  Google Scholar 

  • Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the UK Engineering and Physical Science Research Council (ESPRC), under the grant code (EP/G01664X/1) and European Thermodynamics Ltd. STEM measurements were performed at the EPSRC UK National Facility for Aberration-Corrected STEM managed by the SuperSTEM consortium. The research leading to the XPS results received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No 226716 and the help of Dr Alexei Preobrajenski is gratefully received. LENNF is thanked for access to HRTEM facilities. Prof Steve Meech is thanked for critical checking and discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Chao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashby, S.P., Thomas, J.A., Coxon, P.R. et al. The effect of alkyl chain length on the level of capping of silicon nanoparticles produced by a one-pot synthesis route based on the chemical reduction of micelle. J Nanopart Res 15, 1425 (2013). https://doi.org/10.1007/s11051-013-1425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1425-8

Keywords

Navigation