Skip to main content
Log in

Lightly boron and phosphorus co-doped silicon nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The co-doping of silicon nanocrystals (Si NCs) with boron (B) and phosphorus (P) is an important means to tune the optical properties of Si NCs. However, all the previous work only concerns heavy co-doping. In this study, we carry out first-principles study on light co-doping that leads to the incorporation of dopants at the NC surface, rather than inside NCs. The size (diameter) of Si NCs currently investigated is ~2.2 nm. A Si NC without doping is in the form of Si179H148. It is found that the formation energy of a lightly co-doped Si NC is between those of B- and P-doped Si NCs, hardly being affected by the distance between dopants. Electron localization around P is mainly responsible for the light co-doping-induced reduction of the bandgap of Si NCs. The redshifts of excitation- and emission-energy induced by light co-doping is slightly larger than those induced by B and P doping in most cases. The band-edge radiative recombination rates of undoped, B-doped, P-doped, and lightly co-doped Si NCs have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chao Y, Krishnamurthy S, Montalti M, Lie LH, Houlton A, Horrocks BR, Kjeldgaard L, Dhanak VR, Hunt MRC, Šiller L (2005) Reactions and luminescence in passivated Si nanocrystallites induced by vacuum ultraviolet and soft-x-ray photons. J Appl Phys 98:044316

    Article  Google Scholar 

  • Chao Y, Houlton A, Horrocks BR, Hunt MRC, Poolton NRJ, Yang J, Šiller L (2006) Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: origin and temperature dependence of the blue and orange emissions. Appl Phys Lett 88:263119

    Article  Google Scholar 

  • Chen XB, Pi XD, Yang DR (2010) Bonding of oxygen at the oxide/nanocrystal interface of oxidized silicon nanocrystals: an Ab initio study. J Phys Chem C 114:8774–8781

    Article  CAS  Google Scholar 

  • Chen XB, Pi XD, Yang DR (2011) Critical role of dopant location for P-doped Si nanocrystals. J Phys Chem C 115:661–666

    Article  CAS  Google Scholar 

  • Coxon PR, Wang Q, Chao YM (2011) An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals. J Phys D Appl Phys 44:495301

    Article  Google Scholar 

  • Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Phys Rev B 69:155411

    Article  Google Scholar 

  • Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11036

    Article  CAS  Google Scholar 

  • Delerue C, Lannoo M, Allan G (2000) Excitonic and quasiparticle gaps in Si nanocrystals. Phys Rev Lett 84:2457

    Article  CAS  Google Scholar 

  • Dexter DL (1958) Theory of the optical properties of imperfections in nonmetals. Solid State Phys Adv Res Appl 6:361

    Google Scholar 

  • Fujii M, Hayashi S, Yamamoto K (1998) Photoluminescence from B-doped Si nanocrystals. Appl Phys Lett 83:7953–7957

    CAS  Google Scholar 

  • Fujii M, Mimura A, Hayashi S, Yamamoto Y, Murakami K (2002) Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals. Phys Rev Lett 89:206805

    Article  Google Scholar 

  • Fujii M, Toshikiyo K, Takase Y, Yamaguchi Y, Hayashi S (2003) Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals. J Appl Phys 94:1990–1995

    Article  CAS  Google Scholar 

  • Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S (2005) Photoluminescence from impurity codoped and compensated Si nanocrystals. Appl Phys Lett 87:211919

    Article  Google Scholar 

  • Fukata N (2009) Impurity doping in silicon nanowires. Adv Mater 21:2829–2832

    Article  CAS  Google Scholar 

  • Iori F, Degoli E, Magri R, Marri I, Cantele G, Ninno D, Trani F, Pulci O, Ossicini S (2007) Engineering silicon nanocrystals: theoretical study of the effect of codoping with boron and phosphorus. Phys Rev B 76:085302

    Article  Google Scholar 

  • Ito M, Imakita K, Fujii M, Hayashi S (2010) Nonlinear optical properties of phosphorus-doped silicon nanocrystals/nanoclusters. J Phys D Appl Phys 43:505101

    Article  Google Scholar 

  • Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F (1998) Breakdown of the k-conservation rule in Si nanocrystals. Phys Rev Lett 81:2803–2806

    Article  CAS  Google Scholar 

  • Lechner R, Wiggers H, Ebbers A, Steiger J, Brandt MS, Stutzmann M (2007) Thermoelectric effect in laser annealed printed nanocrystalline silicon layers. Phys Status Solidi Rapid Res Lett 1:262–264

    Article  CAS  Google Scholar 

  • Mangolini L, Kortshagen U (2007) Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater 19:2513–2519

    Article  CAS  Google Scholar 

  • Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779

    Article  CAS  Google Scholar 

  • Ossicini S, Degoli E, Iori F, Luppi E, Magri R (2005) Simultaneously B- and P-doped silicon nanoclusters: formation energies and electronic properties. Appl Phys Lett 87:173120

    Article  Google Scholar 

  • Pi XD, Mangolini L, Campbell SA, Kortshagen U (2007) Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B 75:085423

    Article  Google Scholar 

  • Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U (2008) Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl Phys Lett 92:123102

    Article  Google Scholar 

  • Pi XD, Holman Z, Kortshagen U (2010) Silicon and germanium nanocrystal inks for low-cost solar cells. In: ASME 4th International Conference on Energy Sustainability, pp 471–474

  • Pi XD, Chen XB, Yang DR (2011) First-principles study of 2.2 nm silicon nanocrystals doped with boron. J Phys Chem C 115:9838–9843

    Article  CAS  Google Scholar 

  • Proot JP, Delerue C, Allan G (1992) Electronic structure and optical properties of silicon crystallites: application to porous silicon. Appl Phys Lett 61:1948

    Article  CAS  Google Scholar 

  • Ramos LE, Degoli E, Cantele G, Ossicini S, Ninno D, Furthmüller J, Bechstedt F (2008) Optical absorption spectra of doped and codoped Si nanocrystallites. Phys Rev B 78:235310

    Article  Google Scholar 

  • Stegner AR, Pereira RN, Klein K, Lechner R, Dietmueller R, Brandt MS, Stutzmann M (2008) Electronic transport in phosphorus-doped silicon nanocrystal networks. Phys Rev Lett 100:026803

    Article  CAS  Google Scholar 

  • Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New York

    Book  Google Scholar 

  • Wang LG, Zunger A (2002) Phosphorus and sulphur doping of diamond. Phys Rev B 66:161202

    Article  Google Scholar 

  • Wurfl IP, Hao XJ, Gentle A, Kim DH, Conibeer G, Green MA (2009) Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95:153506

    Article  Google Scholar 

Download references

Acknowledgments

Shanghai Supercomputer Center is thanked for providing computation resources. This study was mainly supported by National Natural Science Foundation of China (Grants 50902122 and 50832006). Partial support from R&D Program of Ministry of Education of China (Grant 62501040202), Innovation Team Project of Zhejiang Province (Grant 2009R50005), Research Fund for Doctoral Program of Higher Education of China (Grant 20090101120157), Basic Funding for Research at Zhejiang University (2011FZA4005), and Major Scientific program of Zhejiang Province (Grant 2009C01024-2) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Pi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Chen, X., Pi, X. et al. Lightly boron and phosphorus co-doped silicon nanocrystals. J Nanopart Res 14, 802 (2012). https://doi.org/10.1007/s11051-012-0802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0802-z

Keywords

Navigation