Skip to main content

Advertisement

Log in

Anodic TiO2 nanotubes powder and its application in dye-sensitized solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314

    Article  CAS  Google Scholar 

  • Choi KS, Farland Mc EW, Stucky GD (2003) Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv Mater 15:2018–2021

    Article  CAS  Google Scholar 

  • Fahim NF, Sekino T (2009) A novel method for synthesis of titania nanotube powders using rapid breakdown anodization. Chem Mat 21:1967–1979

    Article  CAS  Google Scholar 

  • Fahim NF, Morks MF, Sekino T (2009a) Electrochemical synthesis of silica-doped high aspect-ratio titania nanotubes as nanobioceramics for implant applications. Electrochim Acta 54:3255–3269

    Article  CAS  Google Scholar 

  • Fahim NF, Sekino T, Morks MF, Kusunose T (2009b) Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rapid anodization in fluoride-free media. Nanosci Nanotechnol 9:1803–1818

    Article  CAS  Google Scholar 

  • Falaras P (1998) Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Sol Energy Mater Sol Cells 53:163–175

    Article  CAS  Google Scholar 

  • Grätzel M (2006) The advent of mesoscopic injection solar cells. Prog Photovolt 14:429–442

    Article  Google Scholar 

  • Hahn R, Stergiopoulus T, Macak JM, Tsoukleris D, Kontos AG, Albu SP, Kim D, Ghicov A, Kunze J, Falaras P, Schmuki P (2007) Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization—a comparison. Phys Stat Sol (RRL) 1:135–137

    Article  CAS  Google Scholar 

  • Ito S, Cevey Ha NL, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, Pechy P, Nazeeruddin MK, Grätzel M (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun (Cambridge) 38:4004–4006

    Article  Google Scholar 

  • Kang TS, Smith AP, Taylor BE, Durstock M (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9:601–606

    Article  CAS  Google Scholar 

  • Lin CJ, Yu WY, Chien SH (2007) Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells. Appl Phys Lett 91:233120–233123. doi:10.1063/1.2823604

    Article  Google Scholar 

  • Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  • Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti−Fe−O nanotube array Films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364

    Article  CAS  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2 bis(2,2′-bipyridyl-4,4′-decarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  • Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S (2004) Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. J Photochem Photobiol A 164:145–151

    Article  CAS  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Ong KG, Varghese OK, Mor GK, Shankar K, Grimes CA (2007) Application of finite-difference time domain to dye-sensitized solar cells: the effect of nanotube-array negative electrode dimensions on light absorption. Solar Energy Mater Solar Cells 91:250–257

    Article  CAS  Google Scholar 

  • Orel ZC, Gunde MK, Orel B (1997) Application of the Kubelka–Munk theory for the determination of the optical properties of solar absorbing paints. Prog Org Coat 30:59–66

    Article  Google Scholar 

  • Park JH, Lee TW, Kang MG (2008) Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chem Commun (25):2867–2869. doi:10.1039/B800660A

  • Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nano Technol 17:1446–1448

    CAS  Google Scholar 

  • Popat KC, Eltgroth M, La Tempa TJ, Grimes CA, Desai TA (2007a) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 3:1878–1881

    Article  CAS  Google Scholar 

  • Popat KC, Leoni L, Grimes CA, Desai TA (2007b) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28:3188–3197

    Article  CAS  Google Scholar 

  • Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer–TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449

    Article  CAS  Google Scholar 

  • Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110:19191–19197

    Article  CAS  Google Scholar 

  • Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19:235602–235608. doi:10.1088/0957-4484/19/23/235602

    Article  CAS  Google Scholar 

  • Varghese OK, Yang X, Kendig J, Paulose M, Zeng KPC, Ong KG, Grimes CA (2006) Transcutaneous hydrogen sensor: from design to application. Sens Lett 4:120–128

    Article  CAS  Google Scholar 

  • Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology 4:592–597. doi:10.1038/nnano.2009.226

    Article  CAS  Google Scholar 

  • Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261

    Article  CAS  Google Scholar 

  • Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22:6656–6664. doi:10.1021/cm102622x

    Article  CAS  Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges F. Fahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahim, N.F., Sekino, T. Anodic TiO2 nanotubes powder and its application in dye-sensitized solar cells. J Nanopart Res 13, 6409–6418 (2011). https://doi.org/10.1007/s11051-011-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0393-0

Keywords

Navigation