Skip to main content
Log in

Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present an experimental study of self-assembled polymeric nanoparticles in the process of flash nanoprecipitation using a multi-inlet vortex mixer (MIVM). β-Carotene and polyethyleneimine (PEI) are used as a model drug and a macromolecule, respectively, and encapsulated in diblock copolymers. Flow patterns in the MIVM are microscopically visualized by mixing iron nitrate (Fe(NO3)3) and potassium thiocyanate (KSCN) to precipitate Fe(SCN) (3−x)+ x . Effects of physical parameters, including Reynolds number, supersaturation rate, interaction force, and drug-loading rate, on size distribution of the nanoparticle suspensions are investigated. It is critical for the nanoprecipitation process to have a short mixing time, so that the solvent replacement starts homogeneously in the reactor. The properties of the nanoparticles depend on the competitive kinetics of polymer aggregation and organic solute nucleation and growth. We report the existence of a threshold Reynolds number over which nanoparticle sizes become independent of mixing. A similar value of the threshold Reynolds number is confirmed by independent measurements of particle size, flow-pattern visualization, and our previous numerical simulation along with experimental study of competitive reactions in the MIVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen C, Eisenberg A, Mrsic J, Maysinger D (2000) Pcl-b-peo micelles as a delivery vehicle for fk506: assessment of a functional recovery of crushed peripheral nerve. Drug Deliv 7(3):139–145

    Article  CAS  Google Scholar 

  • Ayame H, Morimoto N, Akiyoshi K (2008) Self-assembled cationic nanogels for intracellular protein delivery. Bioconj Chem 19(4):882–890. doi:10.1021/bc700422s

    Article  CAS  Google Scholar 

  • Baleux B (1972) Colorimetric determination of nonionic polyethylene oxide surfactants using an iodine-iodide solution. CR Acad Sci Ser C 279:1617–1620

    Google Scholar 

  • Cheng JC, Olsen MG, Fox RO (2009) A microscale multi-inlet vortex nanoprecipitation reactor: Turbulence measurement and simulation. Appl Phys Lett 94(20):3. doi:10.1063/1.3125428

    Google Scholar 

  • Cho KJ, Wang X, Nie SM, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  Google Scholar 

  • Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1):106–114

    Article  CAS  Google Scholar 

  • Dirksen JA, Ring TA (1991) Fundamentals of crystallization: kinetic effects on particle-size distributions and morphology. Chem Eng Sci 46(10):2389–2427

    Article  CAS  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4

    Article  CAS  Google Scholar 

  • Geng Y, Discher DE (2005) Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 127(37):12780–12781. doi:10.1021/ja053902e

    Article  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79(939):248–253. doi:10.1259/bjr/13169882

    Article  CAS  Google Scholar 

  • Hoang TKN, Deriemaeker L, La VB, Finsy R (2004) Monitoring the simultaneous Ostwald ripening and solubilization of emulsions. Langmuir 20(21):8966–8969

    Article  CAS  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed Engl 40(23):4331–4361

    Article  Google Scholar 

  • Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. doi:10.1021/ja057254a

    Article  CAS  Google Scholar 

  • Johnson BK (2003) Flash nanoprecipitation of organic actives via confined micromixing and block copolymer stabilization. Princeton University, Princeton

  • Johnson BK, Prud’homme RK (2003a) Chemical processing and micromixing in confined impinging jets. AIChE Journal 49(9):2264–2282

    Article  CAS  Google Scholar 

  • Johnson BK, Prud’homme RK (2003b) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–1024. doi:10.1071/ch03115

    Article  CAS  Google Scholar 

  • Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 22(13):1697–1704

    Article  CAS  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res 60(16):4440–4445

    CAS  Google Scholar 

  • Kumar V, Prud’Homme RK (2008) Thermodynamic limits on drug loading in nanoparticle cores. J Pharm Sci 97(11):4904–4914

    Article  CAS  Google Scholar 

  • Kumar V, Prud’homme RK (2009) Nanoparticle stability: processing pathways for solvent removal. Chem Eng Sci 64(6):1358–1361

    Article  CAS  Google Scholar 

  • Kumar V, Wang L, Riebe M, Tung HH, Prud’homme RK (2009) Formulation and stability of ltraconazole and odanacatib nanoparticles: governing physical parameters. Mol Pharm 6(4):1118–1124. doi:10.1021/mp900002t

    Article  CAS  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20(5):357–403

    Article  CAS  Google Scholar 

  • Lavasanifar A, Samuel J, Kwon GS (2001) Micelles self-assembled from poly(ethylene oxide)-block-poly(n-hexyl stearate l-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin b. J Control Release 77(1–2):155–160

    Article  CAS  Google Scholar 

  • Lee LS, Conover C, Shi C, Whitlow M, Filpula D (1999) Prolonged circulating lives of single-chain fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconj Chem 10(6):973–981

    Article  CAS  Google Scholar 

  • Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, Vauthier C (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43. doi:10.1016/j.ijpbarm.2007.05.054

    Article  CAS  Google Scholar 

  • Li SD, Chen YC, Hackett MJ, Huang L (2008) Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 16(1):163–169. doi:10.1038/sj.mt.6300323

    Article  CAS  Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50

    Article  Google Scholar 

  • Lin WJ, Juang LW, Lin CC (2003) Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res 20(4):668–673

    Article  CAS  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2(5):889–896. doi:10.1021/nn800072t

    Article  CAS  Google Scholar 

  • Liu Y, Kathan K, Saad W, Prud’homme RK (2007) Ostwald ripening of beta-carotene nanoparticles. Phys Rev Lett 98(3):036102. doi:10.1103/PhysRevLett.98.036102

    Article  Google Scholar 

  • Liu Y, Cheng CY, Prud’homme RK, Fox RO (2008a) Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 63(11):2829–2842. doi:10.1016/j.ces.2007.10.020

    Article  CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008b) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64(8):808–812. doi:10.1002/ps.1566

    Article  CAS  Google Scholar 

  • Mao SR, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconj Chem 17(5):1209–1218. doi:10.1021/bc060129j

    Article  CAS  Google Scholar 

  • Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323

    Article  CAS  Google Scholar 

  • Monkenbusch M, Schneiders D, Richter D, Willner L, Leube W, Fetters LJ, Huang JS, Lin M (2000) Aggregation behaviour of pe–pep copolymers and the winterization of diesel fuel. Physica B-Condensed Matter 276:941–943

    Article  Google Scholar 

  • Mosqueira VCF, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, Devissaguet JP, Barratt G (2001) Biodistribution of long-circulating peg-grafted nanocapsules in mice: effects of peg chain length and density. Pharm Res 18(10):1411–1419

    Article  CAS  Google Scholar 

  • Mullin JW (1993) Crystallization, 3rd edn. Butterworth Heinemann, Oxford, UK

    Google Scholar 

  • Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE (2003) Polymer vesicles in vivo: correlations with peg molecular weight. J Control Release 90(3):323–334. doi:10.1016/s0168-3659(03)00201-3

    Article  CAS  Google Scholar 

  • Russ B, Liu Y, Prud’homme RK (2010) Optimized descriptive model for micromixing in a vortex mixer. Chem Eng Commun 197(8):1068–1075

    Article  CAS  Google Scholar 

  • Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340. doi:10.1002/ijc.20405

    Article  CAS  Google Scholar 

  • Shuai XT, Ai H, Nasongkla N, Kim S, Gao JM (2004a) Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 98(3):415–426. doi:10.1016/j.jconrel.2004.06.003

    Article  CAS  Google Scholar 

  • Shuai XT, Merdan T, Schaper AK, Xi F, Kissel T (2004b) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconj Chem 15(3):441–448. doi:10.1021/bc034113u

    Article  CAS  Google Scholar 

  • Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29(32):4348–4355. doi:10.1016/j.biomaterials.2008.07.036

    Article  CAS  Google Scholar 

  • Thioune O, Fessi H, Devissaguet JP, Puisieux F (1997) Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm 146(2):233–238

    Article  CAS  Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19(22):9127–9133. doi:10.1021/la030090w

    Article  CAS  Google Scholar 

  • Tyrrell Z, Winoto W, Shen YQ, Radosz M (2009) Block copolymer micelles formed in supercritical fluid can become water-dispensable nanoparticles: poly(ethylene glycol)-block-poly(epsilon-caprolactone) in trifluoromethane. Ind Eng Chem Res 48(4):1928–1932. doi:10.1021/ie801472n

    Article  CAS  Google Scholar 

  • Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen TN, Mork PC, Stenstad P, Hornes E, Olsvik O (1992) Preparation and application of new monosized polymer particles. Prog Polym Sci 17(1):87–161

    Article  CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058. doi:10.1007/s11095-008-9800-3

    Article  CAS  Google Scholar 

  • Wang YL, Dave RN, Pfeffer R (2004) Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. J Supercrit Fluids 28(1):85–99. doi:10.1016/s0896-8446(03)00011-1

    Article  CAS  Google Scholar 

  • Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888. doi:10.1021/ja806804u

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hayat Onyuksel at University of Illinois at Chicago for providing Dynamic Light Scattering for the measurements of nanoparticle sizes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Hong, S., Prud’homme, R.K. et al. Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanopart Res 13, 4109–4120 (2011). https://doi.org/10.1007/s11051-011-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0354-7

Keywords

Navigation