Skip to main content
Log in

Stability of aqueous silica nanoparticle dispersions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we present quantification methods for nanoparticle stability analysis using non-intrusive analytical techniques: attenuated total reflectance, Fourier transform infrared (ATR-FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometer, zeta potential analyses, and dynamic light scattering (DLS). We use these techniques to study the stability of silica nanoparticle dispersions and the effects of pH, temperature, and electrolytes that would be encountered in oil field brines in a reservoir. Spectral analysis of the Si–O bond at wavenumber of 1110 cm−1 with the ATR-FTIR indicates a structural change on the surface of silica particles as the dispersion pH changes, which agrees with zeta potential measurements. We define a critical salt concentration (CSC) for different salts, NaCl, CaCl2, BaCl2, and MgCl2, above which the silica dispersion becomes unstable. Three distinct stages of aggregation occur in the presence of salt: clear dispersed, turbid, and separated phases. Divalent cations Mg2+, Ca2+, and Ba2+ are more effective in destabilizing silica nanoparticle dispersion than the monovalent cation Na+. The CSC for Na+ is about 100 times more than for Ca2+, Ba2+, and Mg2+. Among the divalent cations studied, Mg2+ is the most effective in destabilizing the silica particles. The CSC is independent of silica concentration, and lowers at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763

    Article  CAS  Google Scholar 

  • ASTM Standard D 4187-82, Zeta Potential of Colloids in Water and Waste Water, 1985

  • Colic M, Fisher ML, Franks GV (1998) Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14:6107–6112

    Article  CAS  Google Scholar 

  • Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662

    Google Scholar 

  • Dumont F (2006) Stability of sols: do the silica hydrosols obey the DLVO theory? In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 243–245

    Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition and aggregation: measurement modelling and simulation. Butterworth-Heinemann, Woburn

    Google Scholar 

  • Franks GV (2002) Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J Colloid Interface Sci 249:44–51

    Article  CAS  Google Scholar 

  • Hair ML (2006) Surface chemistry of silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 257–260

    Google Scholar 

  • Healy TW (2006) Stability of aqueous silica sols. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 247–252

    Google Scholar 

  • Hofmann U, Endell K, Wilm D (1934) Röntgeno-graphische und kolloidchemische Untersuchungen über Ton. Angew Chem 47:539–558

    Article  CAS  Google Scholar 

  • Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  • Iler RK (1971) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Israelachivili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  Google Scholar 

  • Jenkins S, Kirk SR, Persson M, Carlen J, Abbas Z (2007) Molecular dynamics simulation of nanocolloidal amorphous silica particles: part I. J Chem Phys 127:224711-1–224711-10

    Article  Google Scholar 

  • Jenkins S, Kirk SR, Persson M, Carlen J, Abbas Z (2008) Molecular dynamics simulation of nanocolloidal amorphous silica particles: part II. J Chem Phys 128:164711-1–164711-10

    Article  Google Scholar 

  • Kissa E (1999) Dispersions: characterizations testing, and measurement. Marcel Dekker, New York

    Google Scholar 

  • Kitchener JA (1971) General discussion. Faraday Disc 52:372–380

    Article  Google Scholar 

  • Lane JMD, Ismail AE, Chandross M, Lorenz CD, Grest GS (2009) Forces between functionalized silica nanoparticles in solution. Phys Rev E 79:050501

    Article  Google Scholar 

  • Mokhatab S, Fresky MA, Islam MR (2006) Applications of nanotechnology in oil and gas E&P. J Pet Technol Online 58:4

    Google Scholar 

  • Morrow BA, Molapo DT (2006) Infrared studies of chemically modified silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 287–294

    Google Scholar 

  • Plaza RC, Quirantes A, Delgado AV (2002) Stability of dispersions of colloidal hematite/yttrium oxide core–shell particles. J Colloid Interface Sci 252:102–108

    Article  CAS  Google Scholar 

  • Roberts WO (2006) Manufacturing and applications of waterborne colloidal silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 131–176

    Google Scholar 

  • Torrie GM, Kusalik PG, Patey GN (1989) Theory of the electrical double layer: ion size effects in a molecular solvent. J Chem Phys 91:6367–6375

    Article  CAS  Google Scholar 

  • Van Blaarderen A, Vrij A (2006) Synthesis and characterization of colloidal model particles mad from organoalkoxysilane. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 65–80

    Google Scholar 

  • Verwey EJW, Overbeek JThG (1948) Theory of stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Yalamanchili MR, Atia AA, Miller JD (1996) Analysis of interfacial water at a hydrophilic silicon surface by in situ FTIR/internal reflection spectroscopy. Langmuir 12:4176–4184

    Article  CAS  Google Scholar 

  • Zhuravlev LT (1987) Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3:316–318

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by the Advanced Energy Consortium (AEC), through the contract BEG08-020. We would like to thank 3M company, particularly Dr. Jimmie Baran for providing the nanoparticles and for scientific discussions. We would also like to acknowledge great help from Dr. Sujeewa Palayangoda and Ms. Wenjun Liu for their great contributions to the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc P. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metin, C.O., Lake, L.W., Miranda, C.R. et al. Stability of aqueous silica nanoparticle dispersions. J Nanopart Res 13, 839–850 (2011). https://doi.org/10.1007/s11051-010-0085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0085-1

Keywords

Navigation