Skip to main content
Log in

Morphology–luminescence correlations in europium-doped ZnO nanomaterials

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to investigate the correlations of morphologies and optical properties, different morphologies of Eu-doped ZnO were synthesized by different methods. Specifically, the structure of SiO2/ZnO:Eu nanoflower was synthesized for the first time and has not been reported previously. One percent was chosen as the Eu doping concentration. The relations of the morphology, diameter, and uniformity with the PL intensity were examined. The PL intensity of ZOE samples has a close relationship with the morphology. The PL intensity order of the different morphologies of ZnO:Eu is as follows: nanorod arrays > thin film > nanospheres > nanoparticles > nanoflowers > nanorods. The PL intensity of nanomaterials is larger, if the diameter of the nanomaterials is larger. However, the size of diameter is not the most important reason. It was found that the sample uniformity plays a key role on ZnO:Eu PL intensity. ZnO:Eu with small particle diameters may have strong photoluminescence intensity, if the nanoparticles are uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrams BL, Holloway PH (2004) Role of the surface in luminescent processes. Chem Rev 104(12):5783–5801

    Google Scholar 

  • Armelao L, Bottaro G, Pascolini M, Sessolo M, Tondello E, Bettinelli M, Speghini⊥ A (2008) Structure-luminescence correlations in Europium-doped sol–gel ZnO nanopowders. J Phys Chem C Nanomater Interfaces 112:4049–4054

    Article  CAS  Google Scholar 

  • Bao J, Zimmler MA, Capasso F, Wang X, Ren ZF (2006) Broadband ZnO single-nanowire light-emitting diode. Nano Lett 6(8):1719–1722. doi:10.1021/nl061080t

    Article  CAS  PubMed  ADS  Google Scholar 

  • Borchers C, Müller S, Stichtenoth D, Schwen D, Ronning C (2006) Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures. J Phys Chem B 110(4):1656–1660

    Article  CAS  PubMed  Google Scholar 

  • Choi K-S, Lichtenegger HC, Stucky GD, McFarland EW (2002) Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid–liquid interfaces. J Am Chem Soc 124(42):12402–12403

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Wang X, Knuesel RJ, Jacobs HO (2008) Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. Nano Lett 8(5):1477–1481

    Article  CAS  PubMed  ADS  Google Scholar 

  • Dev A, Panda SK, Kar S, Chakrabarti S, Chaudhuri S (2006) Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol–gel-derived ZnO thin films. J Phys Chem B 110:14266–14272

    Article  CAS  PubMed  Google Scholar 

  • Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110(33):16159–16161

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical Properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17(4):887–892

    Article  CAS  Google Scholar 

  • Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G (2006) Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Appl Phys Lett 89:123125

    Article  ADS  Google Scholar 

  • Ho S-T, Chen K-C, Chen H-A, Lin H-Y, Cheng C-Y, Lin H-N (2007) Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation. Chem Mater 19(16):4083–4086

    Article  CAS  Google Scholar 

  • Ingham B, Illy BN, Ryan MP (2008) Direct observation of distinct nucleation and growth processes in electrochemically deposited ZnO nanostructures using in situ XANES. J Phys Chem C Nanomater Interfaces 112(8):2820–2824

    Article  CAS  Google Scholar 

  • Ishizumi A, Kanemitsu Y (2005) Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. Appl Phys Lett 86:253106

    Google Scholar 

  • Kanger JS, Otto C, Slotboom M, Greve J (1996) Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides. J Phys Chem 100(8):3288–3292

    Article  CAS  Google Scholar 

  • Kron G, Rau U, Werner JH (2003) Influence of the built-in voltage on the fill factor of dye-sensitized solar cells. J Phys Chem B 107(48):13258–13261

    Article  CAS  Google Scholar 

  • Lakshmi BB, Dorhout PK, Martin CR (1997) Sol–gel template synthesis of semiconductor nanostructures. Chem Mater 9(3):857–862

    Article  CAS  Google Scholar 

  • Lao C, Li Y, Wong CP, Wang ZL (2007) Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett 7(5):1323–1328

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li G-R, Dawa C-R, Bu Q, Lu X-H, Zhen F-L, Yao C-Z, Liu G-K, Tong Y-X (2007) Electrochemical self-assembly of ZnO nanoporous structures. J Phys Chem C Nanomater Interfaces 111(5):1919–1923

    Article  CAS  Google Scholar 

  • Liang S, Sheng H, Liu Y, Hio Z, Lu Y, Shen H (2001) ZnO Schottky ultraviolet photodetectors. J Cryst Growth 225:110–113. doi:10.1016/S0022-0248(01)00830-2

    Article  CAS  ADS  Google Scholar 

  • Liu Y, Luo W, Li R, Liu G, Antonio MR, Chen X (2008) Optical spectroscopy of Eu3+ doped ZnO nanocrystals. J Phys Chem C Nanomater Interfaces 112:686–694

    Article  CAS  Google Scholar 

  • Ramgir NS, Mulla IS, Pillai VK (2006) Micropencils and microhexagonal cones of ZnO. J Phys Chem B 110(9):3995–4001

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Carvajal MA, du Penhoat CH, Mazeau K, Doco T, Perez S (2003) The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modeling and NMR investigation. Carbohydr Res 338:651–671

    Article  CAS  PubMed  Google Scholar 

  • Sadhu S, Sen T, Patra A (2007) Shape controlled synthesis and luminescence properties of ZnO: Eu3+ Nanostructures. Chem Phys Lett 440:121–124. doi:10.1016/j.cplett.2007.04.015

    Article  CAS  ADS  Google Scholar 

  • Shen G, Bando Y, Lee C-J (2005) Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J Phys Chem B 109(21):10578–10583

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa T, Izaki M, Inui H, Murase K, Awakura Y (2006) Microstructure and electronic structure of transparent ferromagnetic ZnO-spinel iron oxide composite films. Chem Mater 18(3):763–770

    Article  CAS  Google Scholar 

  • Takahashi N, Makino M, Nakamura T, Yamamoto H (2002) A novel and simple alcohol-free sol–gel Route for encapsulation of labile proteins. Chem Mater 14(9):3622–3624

    Article  CAS  Google Scholar 

  • Wang XD, Summers CJ, Wang ZL (2004) Large-Scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3):423–426

    Article  CAS  ADS  Google Scholar 

  • Wang X, Hu P, Fangli Y, Yu L (2007) Preparation and characterization of ZnO hollow spheres and ZnO-carbon composite materials using colloidal carbon spheres as templates. J Phys Chem C Nanomater Interfaces 111:6706–6712

    Article  CAS  Google Scholar 

  • Wang Z, Liu X, Gong J, Huang H, Gu S, Yang S (2008a) Epitaxial growth of ZnO nanowires on ZnS nanobelts by metal organic chemical vapor deposition. Cryst Growth Des 8(11):3911–3913

    Article  CAS  Google Scholar 

  • Wang M, Kim EJ, Shin EW, Chung JS, Hahn SH, Park C (2008b) Low-temperature solution growth of high-quality ZnO thin films and solvent-dependent film texture. J Phys Chem C Nanomater Interfaces 112(6):1920–1924

    Article  CAS  Google Scholar 

  • Yang R, Chueh Y-L, Morber JR, Snyder R, Chou L-J, Wang ZL (2007) Single-crystalline branched zinc phosphide nanostructures: synthesis, properties and optoelectronic devices. Nano Lett 7(2):269–275

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zeng H, Liu P, Cai W, Cao X, Yang S (2007) Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission. Cryst Growth Des 7(6):1092–1097

    Article  CAS  Google Scholar 

  • Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D (2004) Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J Phys Chem B 108(13):3955–3958

    Article  CAS  Google Scholar 

  • Zhang H, Yang D, Li D, Ma X, Li S, Que D (2005a) Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst Growth Des 5(2):547–550

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L, Liu X, Yan Y, Chen C, Zhu J (2005b) Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate. J Phys Chem B 109(27):13091–13093

    Article  CAS  PubMed  Google Scholar 

  • Zhu YF, Fan DH, Shen WZ (2007) Template-free synthesis of Zinc oxide hollow microspheres in aqueous solution at low temperature. J Phys Chem C 111:18629–18635

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Lai, H., Xu, H. et al. Morphology–luminescence correlations in europium-doped ZnO nanomaterials. J Nanopart Res 12, 217–225 (2010). https://doi.org/10.1007/s11051-009-9598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9598-x

Keywords

Navigation