Skip to main content
Log in

Synthesis of mixed metallic nanoparticles by spark discharge

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Short spark discharges (2 μs) were successfully applied to generate mixed particles a few nanometres in diameter by fast quenching. Alloyed Cr–Co electrodes were applied to demonstrate this. Further it was shown that if the anode and the cathode are different materials, the discharge process mixes the vapour of both materials, forming mixed nanoparticles. Electron microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were performed on the collected particles to study their size, morphology, composition and structure. The average compositions of the particles were measured by inductively coupled plasma (ICP). In addition, online measurements of the particle size distribution by mobility analysis were carried out. In the case of alloyed electrodes (Cr–Co), the relative concentration of the elements in the nanoparticulate sample was consistent with the electrode composition. When using electrodes of different metals (Au–Pd and Ag–Pd) the individual nanoparticles showed a range of mixing ratios. No surface segregation was observed in these mixed noble metal particles. Crystalline nanoparticulate mixed phases were found in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barret CS et al (1996) The structure of the metals. McGraw-Hill, New York, p 372

    Google Scholar 

  • Cundall CM, Craggs JD (1955) Electrode vapor jets in spark discharges. Spectrochim Acta 7:149–164. doi:10.1016/0371-1951(55)80057-4

    Article  ADS  CAS  Google Scholar 

  • Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290:117–129. doi:10.1016/j.jcis.2005.04.034

    Article  PubMed  CAS  Google Scholar 

  • Fernández AL, de Pablo L (2002) Formation and the colour development in cobalt spinel pigments. Pigment Resin Technol 31(6):350–356. doi:10.1108/03699420210449043

    Article  CAS  Google Scholar 

  • Gale WF, Totemeier TC (2004) Smithells metals reference book. ASM International, The Materials Information Society, Materials Park

    Google Scholar 

  • Hansen PM (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  • Helsper C, Molter W (1993) Investigation of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27A(8):1271–1275

    CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology, properties, behaviors, and measurements of airborne particles. Wiley, New York

    Google Scholar 

  • Hirakawa K, Toshima N (2003) Ag/Rh bimetallic nanoparticles formed by self-assembly from Ag and Rh monometallic nanoparticles in solution. Chem Lett 32(1):78–79. doi:10.1246/cl.2003.78

    Article  CAS  Google Scholar 

  • Hume-Rothery W, Raynor GV (1954) The structure of metals and alloys. The Institute of Metals, London

    MATH  Google Scholar 

  • Jenkins NT, Eagar TW (2003) Submicron particle chemistry: vapor condensation analogous to liquid solidification. JOM J Miner Met Mater Soc 55(6):44–47

    CAS  Google Scholar 

  • Kahng S-J, Choi YJ, Park J-Y, Kuka Y (1999) Phase separation in a two-dimensional Co–Cr alloy. Appl Phys Lett 74(8):1087–1089. doi:10.1063/1.123490

    Article  ADS  CAS  Google Scholar 

  • Kim J-T, Chang J-S (2005) Generation of metal oxide aerosol particles by a pulsed spark discharge technique. J Electrost 63:911–916. doi:10.1016/j.elstat.2005.03.066

    Article  CAS  Google Scholar 

  • Kim M-J, Na H-J, Lee KC, Yoo EA, Lee M (2003) Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J Mater Chem 13:1789–1792. doi:10.1039/b304006m

    Article  CAS  Google Scholar 

  • Kubaschewski O, Alcock CB (1979) Metallurgical thermo-chemistry, international series on materials science and technology, vol 24. Pergamon International Library, Oxford

    Google Scholar 

  • Liu HB, Pal U, Medina A, Maldonado C, Ascencio JA (2005) Structural incoherency and structure reversal in bimetallic Au–Pd nanoclusters. Phys Rev B71:075403 1–075403 6

    Google Scholar 

  • Mäkelä JM, Aalto P, Gorbunov BZ, Korhonen P (1992) Size distributions from aerosol spark generator. J Aerosol Sci 23(Suppl 1):S233–S236. doi:10.1016/0021-8502(92)90392-9

    Article  Google Scholar 

  • Menon M, Khanra BC (2001) Alloying behaviour in Cu–Pd nanostructures. Physica B 304:181–185. doi:10.1016/S0921-4526(01)00340-4

    Article  ADS  CAS  Google Scholar 

  • Powell A, Van Den Avyle J, Damkroger B, Szekely J, Pal U (1997) Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloy. Metall Mater Trans 28B(6):1227–1239

    CAS  Google Scholar 

  • Predel B, Madelung O (1998) Phase equilibria, crystallographic and thermodynamic data of binary alloys. Springer, Berlin

    Google Scholar 

  • Regen MR, Banerjee IA (2006) Preparation of Au–Pd bimetallic nanoparticles in porous germania nanoparticles: a study of their morphology and catalytic activity. Scr Mater 54:909–914. doi:10.1016/j.scriptamat.2005.10.068

    Article  CAS  Google Scholar 

  • Rouquerol F, Rouquerol J, Kenneth SW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  • Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642. doi:10.1016/0021-8502(88)90215-7

    Article  CAS  Google Scholar 

  • Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2008) Generation of nanoparticles by spark discharge. J Nanopart Res. doi:10.1007/s11051-008-9407-y

    Google Scholar 

  • Wang K-W, Chung S-R, Perng T-P (2006) Surface segregation and homogenization of Pd70Ag30 alloy nanoparticles. J Alloy Compd 422:223–226. doi:10.1016/j.jallcom.2005.12.009

    Article  CAS  Google Scholar 

  • Waseda Y, Muramatsu A (2004) Morphology control of materials and nanoparticles. Springer, Berlin

    Google Scholar 

  • Yang C-C, Wan C-C, Wang Y-Y (2004) Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition. J Colloid Interface Sci 279:433–439. doi:10.1016/j.jcis.2004.06.098

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticles catalysts for CO oxidation. Catal Commun 7:281–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Patricia Kooyman for her contribution to TEM analysis. The Project is partially funded by the Delft Center of Sustainable Energy (DISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmidt-Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabrizi, N.S., Xu, Q., van der Pers, N.M. et al. Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res 11, 1209–1218 (2009). https://doi.org/10.1007/s11051-008-9568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9568-8

Keywords

Navigation