Skip to main content
Log in

Newer nanoparticles in hyperthermia treatment and thermometry

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Heating tumors by nanoparticles and resistance in hypoxic tumor cells to a high temperature is emerging as an effective tool in therapeutic oncology as nanomedicine tool. The art of imaging temperature in a tumor at various locations is emerging as the selective approach of hyperthermia to monitor temperature and treat the tumor. However, thermometry and tumor cell interaction with nanoparticles may monitor and evaluate the tumor cell survival after exposure to high physiological temperatures. The application of 10–100 nanometer sized nanoparticles in tumor hyperthermia has emerged as an effective monitoring tool as magnetic resonance (MR) thermal mapping. The temperature and nanoparticle magnetic moment relationship is specific. Furthermore, there are two main issues that are unsolved as of yet. First issue is the relationship of tumor energy changes due to tumor magnetization; linear attenuation after magnetic field and X-ray exposure with tissue temperature increase. The second issue is the undefined behavior of the nanoparticle inside the tumor as diamagnetic or paramagnetic can be therapeutic and it depends on the tumor tissue temperature. In vivo imaging such as MR thermometry mapping of different hypoxic tumor locations solves these issues to some extent. The art of the nanoparticle-induced hyperthermia does have a great impact on public health as alternative therapeutic oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexiou C, Arnold W, Hulin P, Klein RJ, Renz H, Parak FG et al (2001) Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 225:187–193. doi:10.1016/S0304-8853(00)01256-7

    Article  ADS  CAS  Google Scholar 

  • Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast magnets. Magn Reson Med 54:807–812. doi:10.1002/mrm.20614

    Article  PubMed  CAS  Google Scholar 

  • Amao Y, Okura I (2000) Fullerene C60 immobilized in polymethylmethacrylate film as an optical temperature sensing material. Analysis 28:847–849. doi:10.1051/analusis:2000154

    Article  CAS  Google Scholar 

  • Andrä W, Nowak H (eds) (1998) Magnetism in medicine. WILEY-VCH, Berlin, ISBN 3-527-40221-7, p 511 Seiten

  • Arthur RM, Straube WT, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600. doi:10.1080/02656730500159103

    Article  CAS  Google Scholar 

  • Auzans E, Zins D, Blums E, Massart R (1999) Synthesis and properties of Mn-Zn ferrite ferrofluids. J Mater Sci 34:1253–1260. doi:10.1023/A:1004525410324

    Article  CAS  Google Scholar 

  • Baker I, Zeng Q, Li W, Sullivan CR (2006) Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 99(8):106. doi:10.1063/1.2171960

    Article  CAS  Google Scholar 

  • Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn Reson Med 47:1052–1058. doi:10.1002/mrm.10159

    Article  PubMed  Google Scholar 

  • Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current induced magnetic resonance phase imaging. J Magn Reson 137:265–271. doi:10.1006/jmre.1998.1680

    Article  PubMed  CAS  ADS  Google Scholar 

  • Brittenham GM et al (1982) Magnetic susceptibility measurement of human iron stores. N Engl J Med 307:1671–1675

    PubMed  CAS  Google Scholar 

  • Brusentsova TN, Kuznetsov VD (2007) Synthesis and investigation of magnetic properties of substituted ferrite nanoparticles of spinel system Mn1−xZnx[Fe2−yLy]O4. J Magn Magn Mater 311(1):22–25. doi:10.1016/j.jmmm.2006.11.160

    Article  ADS  CAS  Google Scholar 

  • Brusentsov N, Nikitin L, Brusentsova T, Kuznetsov AA, Bayburtskiy FS, Schumakov L, Jurchenko N (2002) Magnetic fluid hyperthermia of the mouse experimental tumor. J Magn Magn Mater 252:378–380. doi:10.1016/S0304-8853(02)00634-0

    Article  ADS  CAS  Google Scholar 

  • Brusentsova TN, Brusentsov NA, Kuznetsov VD, Nikiforov VN (2005) Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-T C agent for magnetic fluid hyperthermia. J Magn Magn Mater 293(1):298–302. doi:10.1016/j.jmmm.2005.02.023

    Article  ADS  CAS  Google Scholar 

  • Buzas CJ, Pacher P, Rosenberg H, Hajnoczky G (2002) Single cell calcium imaging cell calcium imaging studies of pathomechanism of malignant hyperthermia. Biophys J 82(1):649

    Google Scholar 

  • Cheng KH, Hernandez M (1992) Magnetic resonance diffusion imaging detects structural damage in biological tissues upon hyperthermia. Cancer Res 52(11):6066–6073

    PubMed  CAS  Google Scholar 

  • Chivukula VS, Shur MS, Ciplys D (2007) Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine. Phys Status Solidif 204(10):3209–3236. doi:10.1002/pssa.200723313 a

    Article  CAS  ADS  Google Scholar 

  • Cho YW, Park SA, Han TH, Son DH, Ji Sun Park JS, Oh SJ, Moon DH, Cho KJ, Ahn CH, Byun Y, Kim IS, Kwon IC, Kim SY (2007) In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications. Biomaterials 28(6):1236–1247. doi:10.1016/j.biomaterials.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  • Cohen D (1973) Ferromagnetic contamination in the lungs and other organs of the human body. Science 173:745–748. doi:10.1126/science.180.4087.745

    Article  ADS  Google Scholar 

  • Conway J, Hawley M, Mangnall Y, Amasha H, van Rhoon GC (1992) Experimental assessment of electrical impedance imaging for hyperthermia monitoring. Clin Phys Physiol Meas 13:185–189. doi:10.1088/0143-0815/13/A/036

    Article  PubMed  Google Scholar 

  • Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40(5–6):413–422. doi:10.1016/j.ceca.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  • de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT (2007) MR thermometry for monitoring tumor ablation. Eur Radiol 17(9):2401–2410. doi:10.1007/s00330-007-0646-6

    Article  PubMed  Google Scholar 

  • Dowlatshahi K (1992) Percutaneous interstitial laser therapy of a patient with recurrent heptoma in a transplanted liver. Surgery 112:603

    PubMed  CAS  Google Scholar 

  • Drake P, Cho HJ, Shih PS, Kao CH, Lee KF, Kuo CH, Lin XZ, Lin YJ (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17:4914. doi:10.1039/b711962c

    Article  CAS  Google Scholar 

  • Fortin JP, Wilhelm C, Gazeau F, Servais J, Talbot D, Ménager C, Bacri JC (2006) Use of magnetic nanoparticles as intracellular agents for hyperthermia. Contrast Media Mol Imaging 1(2):56–57. doi:10.1002/cmmi.12

    Article  Google Scholar 

  • Gellermann J, Wlodarczyk W, Feussner A, Fahling H, Nadobny J, Hildebrandt B, Felix R, Wust P (2005) Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 21:497–513. doi:10.1080/02656730500070102

    Article  CAS  Google Scholar 

  • Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16(2–3):215–233. doi:10.1016/0169-409X(95)00026-4

    Article  CAS  Google Scholar 

  • Gutknect N, Kanehl S, Moritz A, Mittermayer C, Lampert L (1998) Effects of Nd:YAG-laser irradiation on monolayer cell cultures. Lasers Surg Med 22:30–36. doi:10.1002/(SICI)1096-9101(1998)22:1<30::AID-LSM8>3.0.CO;2-Y

    Article  Google Scholar 

  • Haik Y, al-Ramadi B, Issa B, Qadri S, Hayek S, Hijaze H (2008) Multifunctional Nanoparticles for Imaging Guided Interventions. http://hdl.handle.net/10101/npre.2008.2190.1

  • Han S, Lin J, Zhou F, Vellanoweth RL (2000) Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection. Biochem Biophys Res Commun 279(1):265–269. doi:10.1006/bbrc.2000.3943

    Article  PubMed  CAS  Google Scholar 

  • Harrison GG, Saunders SJ, Biebuyck JF, Hickman R, Dent DM, Weaver V et al (1969) Anaesthetic-induced malignant hyperpyrexia and a method for its prediction. Br J Anaesth 41:844–855. doi:10.1093/bja/41.10.844

    Article  PubMed  CAS  Google Scholar 

  • Heinfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. doi:10.1259/bjr/13169882

    Article  CAS  Google Scholar 

  • Heisterkamp J, van Hillegersberg R, Ijzermans JNM (1999) Critical temperature and heating time for coagulation damage: Implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg Med 25:257–262. doi:10.1002/(SICI)1096-9101(1999)25:3<257::AID-LSM10>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  • Hiroka M, Mitsumori M, Hiroi N, Ohno S, Tanaka Y, Kotsuka Y, Sugimachi K (2000) Development of RF and microwave heating equipment and clinical application to cancer treatment in japan. IEEE Trans Microw Theory Tech 48:1789–1799. doi:10.1109/22.883855

    Article  ADS  Google Scholar 

  • Huang WC, Chen YC (2008) Photochemical synthesis of polygonal gold nanoparticles. J Nanopart Res 10(4):697–702. doi:10.1007/s11051-007-9293-8

    Article  CAS  Google Scholar 

  • Huff TB, Tong L, Zhao Y, Hansen MN, Cheng J-X, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132. doi:10.2217/17435889.2.1.125

    Article  PubMed  CAS  Google Scholar 

  • Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94(3):308–313. doi:10.1111/j.1349-7006.2003.tb01438.x

    Article  PubMed  CAS  Google Scholar 

  • Jennifer AN, Bennett LH, Wagner MJ (2002) Solution, synthesis of gadolinium nanoparticles. J Am Chem Soc 124(12):2979–2983. doi:10.1021/ja0122703

    Article  CAS  Google Scholar 

  • Jones DN, McCowage GB, Sostman HD, Brizel DM, Layfield L, Charles HC, Dewhirst MW, Prescott DM, Friedman HS, Harrelson JM, Scully SP, Coleman RE (1996) Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37:1438–1444

    PubMed  CAS  Google Scholar 

  • Jones EF, He J, VanBrocklin HF, Franc BL, Seo Y (2008) Nanoprobes for Medical Diagnosis: Current Status of Nanotechnology in Molecular Imaging. Curr Nanosci 4(1):17–29. doi:10.2174/157341308783591843

    Article  ADS  Google Scholar 

  • Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225(1):118–126. doi:10.1016/S0304-8853(00)01239-7

    Article  ADS  CAS  Google Scholar 

  • Kannan R, Katti KV (2007) Targeted gold nanoparticles for imaging and therapy. In: Labhasetwar V, Leslie-Pelecky DL (eds) Biomedical applications of nanotechnology, vol 7. Wiley, NY, p 168

    Google Scholar 

  • Karam JA, Mason RP, Koeneman KS, Antich PP, Benaim EA, Hsieh TJ (2003) Molecular imaging in prostate cancer. J Cell Biochem 90:473–483. doi:10.1002/jcb.10636

    Article  PubMed  CAS  Google Scholar 

  • Katti KV, Kannan R, Katti K, Kattumori V, Pandrapraganda R, Rahing V, Cutler C, Boote EJ, Casteel SW, Smith CJ, Robertson JD, Jurrison SS (2006) Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys 56(1):23–34. doi:10.1007/s10582-006-1033-2

    Article  Google Scholar 

  • Kim EE, Jackson EF (1999) Hyperthermia of cancer. In: Molecular imaging in oncology: PET, MRI, MRS. Springer-Verlag, Berlin, 95 pp

  • Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative Magnetic Resonance Imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    PubMed  CAS  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027

    PubMed  CAS  Google Scholar 

  • Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50(1):40–49. doi:10.1002/mrm.10494

    Article  PubMed  Google Scholar 

  • Kraus RH, Wright B (2007) Magnetic nanoparticles in cancer diagnosis and hyperthermic treatment. In: Labhasetwar V, Leslie-Pelecky DL (eds) Biomedical applications of nanotechnology, chap 3. Wiley, Hoboken, NJ, pp 65–82

    Chapter  Google Scholar 

  • Krause W, Hackmann-Schlichter N, Maier FK, Müller R (2000) Dendrimers in diagnostics. In: Topics in current chemistry. Dendrimers II architecture, nanostructure and supramolecular chemistry, vol 210. Springer, Berlin, pp 261–308

  • Kussman BD, Mulkern RV, Holzman RS (2004) IIatrogenic hyperthermia during cardiac Magnetic Resonance Imaging. Anesth Analg 99:1053–1055. doi:10.1213/01.ANE.0000133911.79161.AF

    Article  PubMed  Google Scholar 

  • Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11:733–743. doi:10.1016/j.nuclcard.2004.09.002

    Article  PubMed  Google Scholar 

  • Larach MG, Localio AR, Allen GC, Denborough MA, Ellis FR, Gronert GA et al (1994) A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 80:771–779. doi:10.1097/00000542-199404000-00008

    Article  PubMed  CAS  Google Scholar 

  • Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev 87:901–927. doi:10.1021/cr00081a003

    Article  CAS  Google Scholar 

  • Le Bihan DL, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171:853–857

    PubMed  CAS  Google Scholar 

  • LeBihan D, Hoult DI, Levin RL (1990) Hyperthermia system combined with a magnetic resonance imaging unit. Med Phys 17(5):855–860. doi:10.1118/1.596477

    Article  PubMed  Google Scholar 

  • Lewin JS, Conell CF, Duerk JL, Chung YC, Clampitt ME, Spesak J, Gazelle GS et al (1998) Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: Clinical trial for evaluation of safety and feasibility. J Magn Reson Imaging 8:40–47. doi:10.1002/jmri.1880080112

    Article  PubMed  CAS  Google Scholar 

  • Maqueda RJ, Wurden GA, Terry JL, Stillerman JA (2000) The new infrared imaging system on Alcator C-Mod. Rev Sci Instrum 70:734–737. doi:10.1063/1.1149496

    Article  ADS  Google Scholar 

  • Mark D, Hurwitz MD (1999) Hyperthermia for prostate cancer: a review. Prostate J 1(4):174–178. doi:10.1046/j.1525-1411.1999.14001.x

    Article  Google Scholar 

  • Martina MS, Fortin JP, Menager C, Clement O, Barratt G, Grabielle-Madelmont C, Gazeau F et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685. doi:10.1021/ja0516460

    Article  PubMed  CAS  Google Scholar 

  • Maswadi SM, Dodd SJ, Gao JH, Glickman RD (2004) Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography. J Biomed Opt 9(4):711–718. doi:10.1117/1.1751399

    Article  PubMed  Google Scholar 

  • Matlachov AN, Volegov PL, Espy MA, Kraus RH (2004) SQUID detected NMR in microtesla magnetic fields. J Magn Reson 170:1–7. doi:10.1016/j.jmr.2004.05.015

    Article  PubMed  ADS  CAS  Google Scholar 

  • Matsuki H, Satoh T, Murakami K, Hoshino T, Yanada T, Kikuchi S (1990) Local hyperthermia based on soft heating method utilizing temperature-sensitive ferrite rod. IEEE Trans Magn 26(5):1551–1553. doi:10.1109/20.104442

    Article  ADS  Google Scholar 

  • McDermott R, Trabesinger AH, Muck M, Hahn EL, Pines A, Clarke J (2002) Liquid-state NMR and scalar coupling in microtesla magnetic fields. Science 295:2247–2249. doi:10.1126/science.1069280

    Article  PubMed  ADS  CAS  Google Scholar 

  • McDermott R, Kelso N, Lee SK, Mossle M, Muck M, Myers W, ten Haken B, Seton HC et al (2004) SQUID-detected magnetic resonance imaging in microtesla magnetic fields. J Low Temp Phys 135:793–821. doi:10.1023/B:JOLT.0000029519.09286.c5

    Article  ADS  CAS  Google Scholar 

  • McFerrin MB, Sontheimer H (2006) Optical and MRI multifunctional nanoprobe for targeting gliomas. Neuron Glia Biol 2(1):39–49. doi:10.1017/S1740925X06000044

    Article  PubMed  Google Scholar 

  • Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K (2000) Tumour regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite incorporated microspheres in rats. Int J Oncol 16:1153–1158

    PubMed  CAS  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002a) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284. doi:10.1080/02656730110108785

    Article  CAS  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002b) Tumor response to aterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 80:149–156. doi:10.1002/jso.10118

    Article  PubMed  Google Scholar 

  • Mulkern RV, Chung AH, Jolesz FA, Hynynen K (1997) Temperature monitoring of ultrasonically heated muscle with RARE chemical shift imaging. Med Phys 24(12):1899–1906. doi:10.1118/1.598103

    Article  PubMed  CAS  Google Scholar 

  • Naruse S, Higuchi T, Horikawa Y, Tanaka C (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci USA 83(21):8343–8347. doi:10.1073/pnas.83.21.8343

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrence TS, Becker CW, Balogh L, Khan MK (2004) Dendrimer nanoparticle organ/tumor distribution. Pharm Res 21(3):476–483. doi:10.1023/B:PHAM.0000019302.26097.cc

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Borgström P, Witkiewicz H, Li Y, Borgström BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, Schnitzer JE (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25(3):327–337. doi:10.1038/nbt1292

    Article  PubMed  CAS  Google Scholar 

  • Palussière J, Salomir R, Bail BL, Fawaz R, Quesson B, Grenier N, Moonen CTW (2002) Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh. Magn Reson Med 47(6):1065–1072. doi:10.1002/mrm.10176 My paper

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181. doi:10.1088/0022-3727/36/13/201

    Article  ADS  Google Scholar 

  • Parekh K, Upadhyay RV, Belova L, Rao KV (2006) Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology 17:5970–5975. doi:10.1088/0957-4484/17/24/011

    Article  ADS  CAS  Google Scholar 

  • Peller M (2003) Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magn Reson Imaging 21(5):545–551. doi:10.1016/S0730-725X(03)00070-5

    Article  PubMed  Google Scholar 

  • Plassat V, Martina MS, Barratt G, Ménager C, Lesieur S (2007) Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int J Pharm 344(1–2):118–127. doi:10.1016/j.ijpharm.2007.05.018

    Article  PubMed  CAS  Google Scholar 

  • Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feußner A, Denecke T, Gutberlet M, Jordan A, Felix R, Wust P (2006) Int J Hyperthermia 22(4):319–325 . doi:10.1080/02656730600734128

    Google Scholar 

  • Ponce AM, Viglianti BL, Yu D, Yarmolenko PS, Michelich CR, Woo J, Bally MB, Dewhirst MW (2007) Magnetic Resonance Imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99(1):53–63

    Article  PubMed  CAS  Google Scholar 

  • Rein PM, Hagmann M, Turner P, Issels R, Reiser M (2005) Ferrite-enhanced MRI monitoring in hyperthermia. Magn Reson Imaging 23(10):1017–1020. doi:10.1016/j.mri.2005.09.008

    Article  Google Scholar 

  • Rinck PA, Muller RN (1999) Field strength and dose dependence of contrast enhancement by gadolinium based MR contrast agents. Eur Radiol 9:908–1004. doi:10.1007/s003300050781

    Article  Google Scholar 

  • Ritman EL (2002) Molecular imaging in small animals—roles for micro-CT. J Cell Biochem 87(39):116–124. doi:10.1002/jcb.10415

    Article  CAS  Google Scholar 

  • Robins HI, Longo WL, Steeves RA, Cohen JD, Schmitt CL, Neville AJ, O’Keefe S, Lagoni R, Riggs C (1990) Adjunctive therapy (whole body hyperthermia versus lonidamine) to total body irradiation for the treatment of favorable B-cell neoplasms: a report of two pilot clinical trials and laboratory investigations. Int J Radiat Oncol Biol Phys 18(4):909–920

    PubMed  CAS  Google Scholar 

  • Romanus E, Huckel M, Gross C, Prass S, Weitschies W, Brauer R, Weber P (2002) Magnetic nanoparticles relaxation measurement as a novel tool for in vivo diagnostics. J Magn Magn Mater 252:387–389. doi:10.1016/S0304-8853(02)00645-5

    Article  ADS  CAS  Google Scholar 

  • Romanus E, Berkov DV, Prass S, Grob C, Weitschies W, Weber P (2003) Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology 14:1251–1254. doi:10.1088/0957-4484/14/12/003

    Article  ADS  CAS  Google Scholar 

  • Seegenschmiedt MH, Brady LW, Sauer R (1990) Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 13:352. doi:10.1097/00000421-199008000-00016

    Article  PubMed  CAS  Google Scholar 

  • Settecase F, Sussman MS, Roberts TPL (2007) A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging. Contrast Media Mol Imaging 2:50–54. doi:10.1002/cmmi.120

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Kwon S (2007) New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci 2(1):115–123. doi:10.1080/17458080601101176

    Article  CAS  Google Scholar 

  • Shimura M, Ishizaka Y, Yuo A, Hatake K, Oshima M, Sasaki T, Takaku F (1997) Characterization of room temperature induced apoptosis in HL-60. FEBS Lett 417(3):379–384. doi:10.1016/S0014-5793(97)01327-6

    Article  PubMed  CAS  Google Scholar 

  • Shuai J, Parker I (2005) Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. Cell Calcium 37(4):283–299. doi:10.1016/j.ceca.2004.10.008

    Article  PubMed  CAS  Google Scholar 

  • Silver FH (2006) Mechanochemical transduction and its role in biology. In: Mechanosensing and mechanochemical transduction in extracellular matrix biological, chemical, engineering, and physiological aspects, chap 10, vol XVI. Springer Verlag, London, pp 262–270

  • Smith CR, Sabatino DR, Praisner TJ (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201. doi:10.1007/s003480000154

    Article  CAS  Google Scholar 

  • Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J et al (2005) Folate-conjugated iron-oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physiochemical characterization, and in vitro experiments. Bioconj Chem 16:1181–1188. doi:10.1021/bc050050z

    Article  CAS  Google Scholar 

  • Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54:718–724. doi:10.1002/mrm.20617

    Article  PubMed  Google Scholar 

  • Steeves RA (1992) Hyperthermia in cancer therapy: where are we today and where are we going? Bull N Y Acad Med 68(2):341–350

    PubMed  CAS  Google Scholar 

  • Sulliven DM, Ben-Yosef R, Kapp DS (1993) Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. Int J Hyperthermia 9(5):627–643. doi:10.3109/02656739309032052

    Article  Google Scholar 

  • Sutariya GM, Vincent D, Bayard B, Upadhyay RV, Noyel G, Mehta RV (2003) Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite. J Magn Magn Mater 260(1–2):42–47. doi:10.1016/S0304-8853(01)01369-5

    Article  ADS  CAS  Google Scholar 

  • Tanaka K, Ito K, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Intratumoral injection of immature dendrite cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 116:624–633. doi:10.1002/ijc.21061

    Article  PubMed  CAS  Google Scholar 

  • Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL (2005) Synthesis of gadolinium-labeled shell-crosslinked nanoparticles for magnetic resonance imaging applications. Adv Funct Mater 15(8):1248–1254. doi:10.1002/adfm.200500005

    Article  CAS  Google Scholar 

  • Upadhyay RV, Mehta RV, Parekh K, Shrinivas D, Pant RP (1999). J Magn Magn Mater 201:129–132. doi:10.1016/S0304-8853(99)00034-7

    Google Scholar 

  • Uskoković W, Košak A, Drofenik M, Drofenik M (2006) Preparation of silica-coated lanthanum-strontium manganite particles with designable Curie Point, for application in hyperthermia treatments. Int J Appl Cer Tech 3(2):134–143. doi:10.1111/j.1744-7402.2006.02065.x

    Article  Google Scholar 

  • van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184. doi:10.1093/annonc/mdf280

    Article  PubMed  Google Scholar 

  • van Rijswijk CS, Geirnaerdt MJA, Hogendoorn PCW, Peterse JL, van Coevorden F, Taminiau AHM, Tollenaar RAEM, Kroon BBR, Bloem JL (2003) Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 13(8):1849–1858. doi:10.1007/s00330-002-1785-4

    Article  PubMed  Google Scholar 

  • Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008. doi:10.1021/nl0502569

    Article  PubMed  CAS  ADS  Google Scholar 

  • Villa A, Gill H, McCallion O, Alonso M (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98:231–244. doi:10.1016/j.jconrel.2004.04.026

    Article  CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5:1014–1020. doi:10.1158/1535-7163.MCT-05-0381

    Article  PubMed  CAS  Google Scholar 

  • Volegov P, Matlachov AN, Espy MA, George JS, Kraus RH Jr (2004) Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields. Magn Reson Med 3(52):467–470. doi:10.1002/mrm.20193

    Article  Google Scholar 

  • Wijaya A, Brown KA, Alper JD, Hamad-Schifferli K (2007) Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater 309(1):15–19. doi:10.1016/j.jmmm.2006.04.014

    Article  ADS  CAS  Google Scholar 

  • Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Mönich G, Felix R (2005) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8(1):165–174. doi:10.1002/jmri.1880080129

    Article  Google Scholar 

  • Wright BL, Barker RA (2007) Established and emerging therapies for Hutington disease. Curr Mol Med 7(6):579–587

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497. doi:10.1016/S1470-2045(02)00818-5

    Article  PubMed  CAS  Google Scholar 

  • Ying-ying G, Tan Xiao-ping T, Shu-quan L, Shang-bin S (2004) Effects of La3+ doping on MnZn ferrite nanoscale particles synthesized by hydrothermal method. J Cent S Univ Tech 11(2):113–228. doi:10.1007/s11771-004-0024-3

    Article  Google Scholar 

  • Yu SB, Watson AD (1999) Metal-based X-ray Contrast Media. Chem Rev 99(9):2353–2378. doi:10.1021/cr980441p

    Article  PubMed  CAS  Google Scholar 

  • Zbigniew J, Kurcok P, Walach W, Janeczek H, Radecka I (1993) Synthesis of ethylene glycol-l-lactide block copolymers. Makromol Chem 194:1681–1689. doi:10.1002/macp.1993.021940616

    Article  Google Scholar 

  • Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1243. doi:10.1038/nm1101-1241

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Lu W, Weng Y, Cui H, Luo Q (2007) Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging. Appl Opt 46(10):1911–1917. doi:10.1364/AO.46.001911

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Chen, C.J. Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11, 671–689 (2009). https://doi.org/10.1007/s11051-008-9548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9548-z

Keywords

Navigation