Skip to main content
Log in

Phases and phase transformations in nanocrystalline ZrO2

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Starting from results from He-pycnometry, electron diffraction, Extended X-ray Absorption Fine Structure Spectroscopy and Perturbed Angular Correlation Spectroscopy the phase transformations and structures of zirconia are described. From a comparison of these results with those obtained on other oxide nanoparticles it is concluded that the phases and structure of nanoparticles are different compared to those of coarse-grained material. The difference of the transformation temperature of bare and coated nanoparticles was used to estimate enthalpy and entropy of the tetragonal → monoclinic transformation for nanoparticulate zirconia. By comparison with results obtained from other nanocrystalline oxides, the following rules were derived: Provided the particles are sufficiently small, particles made of materials showing phase transitions crystallize in the high temperature structure. However, compared to coarse-grained materials of the same structure, the density of nanoparticles is reduced. A first estimation limits this phenomenon to particle sizes well below 10 nm. Those nanoparticles follow the generalized phase diagram postulated by Tammann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonioli G., Lottici P.P., Manzini I., Gnappi G., Montenero A., Paloschi F., Parent P. (1994). An EXAFS study of the local structure around Zr atoms in Y2O3-stabilized ZrO2 by the sol-gel method. J. Non-Cryst. Solids 177:179–186

    Article  CAS  Google Scholar 

  • Asmani M., Kermel C., Leriche A., Ourak M. (2001). Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J. Europ. Ceram. Soc. 21:1081–1086

    Article  CAS  Google Scholar 

  • Ayyub P., Multani M., Barma M., Palkar V.R., Vijayaraghavan R. (1988). Size induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C, Solid State Phys. 21:2229–2245

    Article  CAS  Google Scholar 

  • Ayyub P., Palkar V.R., Chattopadhay S., Multani M. (1995). Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51:6135–6138

    Article  CAS  Google Scholar 

  • Böhm H.J., Fischer F.D., Reisner G. (1997). Evaluation of elastic strain energy of spheroidal inclusions with uniform volumetric and shear eigenstrains. Scripta Mater. 36:1053–1059

    Article  Google Scholar 

  • Catchen G.L. (1995). Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. Mat. Res. Soc. Bull. 20:37–46

    CAS  Google Scholar 

  • Chang J., Johnson E. (2005). Surface and bulk melting of small metal clusters. Phil. Mag. 85:3617–3627

    Article  CAS  Google Scholar 

  • Dorey R.A., Yeomans J.A., Smith P.A. (2002). Effect of pore clustering on the mechanical properties of ceramics. J. Europ. Ceram. Soc. 22:403–409

    Article  CAS  Google Scholar 

  • Fischer F.D., Oberaigner E.R. (2000). Deformation, stress state, and thermodynamic force for a transforming spherical inclusion in an elastic–plastic material. ASME J. Appl. Mech. 67:793–796

    Article  Google Scholar 

  • Fischer F.D., Reisner G. (1998). A criterion for the martensitic transformation of a microregion in an elastic–plastic material. Acta Mater. 46:2095–2102

    Article  CAS  Google Scholar 

  • Fischer F.D., Böhm H.J. (2005). On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations. Acta Mater. 53:367–374

    Article  CAS  Google Scholar 

  • Forker M., Schmidberger J., Szabó D.V., Vollath D. (2000). Perturbed-angular-correlation study of phase transformations in nanoscaled Al2O3-coated and noncoated ZrO2 particles synthesized in a microwave plasma. Phys. Rev. B 61:1014–1025

    Article  CAS  Google Scholar 

  • Forker M., Brossmann U., Würschum R. (1998). Perturbed-angular-correlation study of electric quadrupole interactions in nanocrystalline ZrO2. Phys. Rev. B 57:5177–5181

    Article  CAS  Google Scholar 

  • Frauenfelder H., & R.M. Steffen, 1974. In: Siegbahn K. ed. Alpha, Beta, and Gamma Spectroscopy. North-Holland, Amsterdam

  • Garvie R.C. (1978). Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82:218–224

    Article  CAS  Google Scholar 

  • Greaves C. (1983). A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3. J. Solid State Chem. 49:325–333

    Article  CAS  Google Scholar 

  • Hagelstein M., Moser H.O., Vollath D., Ferrero C., Borowski M. (2001). XAS investigation of Al2O3-coated nano-composite ZrO2. J. Synchrotron Radiation 8:522–524

    Article  CAS  Google Scholar 

  • Hemley R.J., Jephcoat A.P., Mao H.K., Ming L.C., Manghnani M.H. (1988). Pressure-induced amorphization of crystalline silica. Nature 334:52–54

    Article  CAS  Google Scholar 

  • Inorganic Crystal Structure Database (ICSD) entry No. 4275

  • Inorganic Crystal Structure Database (ICSD) entry No. 6814

  • JCPDS #17-0923

  • JCPDS #37-1484

  • Kao A.S., Gorman G.I. (1990). Modification of zirconia film properties by low-energy ion bombardment during reactive ion-beam deposition. J. Appl. Phys. 67:3826–3834

    Article  CAS  Google Scholar 

  • Kingery W.D., Bowen H.K., Uhlmann D.R. (1976). Introduction to Ceramics, John Wiley, Sons, New York

    Google Scholar 

  • Koningsberger D.C. & R. Prins eds., 1987. X-Ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley, Sons, New York, Vol. 92 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications

  • Livey D., Murray P. (1956). Surface energies of solid oxides and carbides. J. Am. Ceram. Soc. 39:363–372

    Article  Google Scholar 

  • Massalski T.B., 1990. Binary Alloy Phase Diagrams, Vol. 3. ASM-International, Metals Park Ohio

  • Mayo M.J., Suresh A., Porter W.D. (2003). Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5:100–109

    CAS  Google Scholar 

  • McHale J.M., Auroux A., Navrotsky A. (1997). Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Sci. Mag. 277:788–791

    CAS  Google Scholar 

  • Mishima O., Calvert L.D., Whally E. (1985). An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:76–78

    Article  CAS  Google Scholar 

  • Moulzolf S.C., Yu Y., Frankel D.J., Lad R.J. (1997). Properties of ZrO2 films on sapphire prepared by zyclotron resonance sputtering. J. Vac. Sci. Technol. A15:1211–1215

    Article  CAS  Google Scholar 

  • Navrotsky A. (2003). Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem. Trans. 4:34–37

    Article  Google Scholar 

  • Ondracek G., 1994. Werkstoffkunde: Leitfaden für Studium und Praxis, Expert-Verlag, Ehningen bei Böblingen

  • Ostwald W. (1897). Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22:289–302

    Google Scholar 

  • Pellegrin, Hagelstein E.M., Doyle S., Moser H.O., Fuchs J., Vollath D., Schuppler S., James M.A., Saxena S.S., Niesen L., Rogojanu O., Sawatzky G.A., Ferrero C., Borowski M., Tjernberg O., Brookes N.B. (1999). Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques. Phys. Stat. Sol. B 215:797–801

    Google Scholar 

  • Rastogi S., Höhne G.W.H., Keller A. (1999). Unusual pressure-induced phase behavior in crystalline poly(4-methylpentene-1); calorimetric and spectroscopic results and further implications. Macromolecules 32:8897–8909

    Google Scholar 

  • Rastogi S., Newman M., Keller A. (1993). Unusual pressure-induced phase behavior in crystalline poly-4-methyl-pentene-1. J. Polym. Sci. B 31:125–139

    Google Scholar 

  • Sakai H. (1996). Surface-induced melting of small particles. Surf. Sci. 351:285–291

    Article  CAS  Google Scholar 

  • Schatz G., Weidinger A. (1996). Nuclear Condensed Matter Physics: Nuclear Methods and Applications, John Wiley Sons, New YorK

  • Schlabach S., D. V. Szabó & D. Vollath, 2006. Structure and grain growth of TiO2 nanoparticles investigated by electron- and x-ray-diffraction and 181Ta perturbed angular correlations. J. Appl. Phys. (in the print)

  • Schupper N. & N. M. Shnerb, 2005. Condensed Matter. cond-mat/0403674.

  • Srdic V.V., Winterer M., Miehe G., Hahn H. (1999) Different zirconia-alumina nanopowders by modifications of chemical vapor synthesis. NanoStruct. Mater. 12: 95–100

    Article  Google Scholar 

  • Stillinger F.H., Debenetti G.P. (2003) Phase transitions, Kauzmann curves, and inverse melting. Biophys. Chem. 105: 211–220

    Article  CAS  Google Scholar 

  • Suresh A., Mayo M.J., Porter W.D. (2003) Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J. Mater. Res. 18: 2912–2921

    Article  CAS  Google Scholar 

  • Tammann G. (1903) Kristallisieren und Schmelzen. Ein Beitrag zur Lehre der Änderungen des Aggregatzustandes, Johann Ambrosius Barth, Leipzig

  • Ushakov S.V., Brown C.E., Navrotsky A. (2004). Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 19:693–696

    Article  CAS  Google Scholar 

  • Vollath D., Szabó D.V. (1994). Nanocoated particles: A special type of ceramic powder. NanoStruct. Mater. 4:927–938

    Article  CAS  Google Scholar 

  • Vollath D., Sickafus K.E. (1992). Synthesis of nanosized ceramic oxide powders by microwave plasma reactions. NanoStruct. Mater. 1:427–437

    Article  CAS  Google Scholar 

  • Vollath D., Forker M., Hagelstein M., Szabó D.V. (2001). Structural disorder in the anion lattice of nanocrystalline zirconia and hafnia particles. Mat. Res. Soc. Symp. Proc. 634:B7.7.1–8.2

    Google Scholar 

  • Volmer M. (1983). Zur Kinetik der Phasenbildung und Elektrodenreaktion. Harri Deutsch, Frankfurt/M

  • Wang C.M., Azad S., Thevuthasan S., Shuttanandan V., McCready D.E., Peden C.H.F. (2004a). Distortion of the oxygen sublattice in pure cubic-ZrO2. J. Mater Res. 19:1315–1319

    Article  CAS  Google Scholar 

  • Wang Y.S., He C., Hockey B.J., Lacey P.I., Hsu S.M. (1995). Wear transitions in monolithic alumina and zirconia-alumina composites. Wear 181–183:156–164

    Google Scholar 

  • Zhang Y.L., Jin X.J., Hsu T.Y. (2003). Thermodynamic calculation of Ms in ZrO2–CeO2–Y2O3 system. J. Europ. Ceram. Soc. 23:685–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

At the Forschungszentrum Karlsruhe this work was partly supported by Deutsche Forschungsgemeinschaft (DFG) under grant number VO861/1-1, and VO861/1-2. The EXAFS measurements were performed at the European Synchrotron Radiation Facility, Beamline BM29, Grenoble, France. Provision of beam time and the support of C. Ferrero and M. Borowski are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vollath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollath, D., Fischer, F.D., Hagelstein, M. et al. Phases and phase transformations in nanocrystalline ZrO2 . J Nanopart Res 8, 1003–1016 (2006). https://doi.org/10.1007/s11051-006-9116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9116-3

Keywords

Navigation