Skip to main content

Advertisement

Log in

Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and its Contribution to Biofilms

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nobile CJ, Mitchell AP. Microbial biofilms: e pluribus unum. Curr Biol. 2007;17:R349–53. doi:10.1016/j.cub.2007.02.035.

    Article  CAS  PubMed  Google Scholar 

  2. Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189:7945–7. doi:10.1128/JB.00858-07.

    Article  CAS  PubMed  Google Scholar 

  3. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59:1114–28. doi:10.1111/j.1365-2958.2005.05008.x.

    Article  CAS  PubMed  Google Scholar 

  4. Vilain S, Pretorius JM, Theron J, Brozel VS. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilm. Appl Environ Microbiol. 2009;75:2861–8. doi:10.1128/AEM.01317-08.

    Article  CAS  PubMed  Google Scholar 

  5. Tetz GV, Artemenko NK, Tetz VV. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 2009;53:1204–9. doi:10.1128/AAC.00471-08.

    Article  CAS  PubMed  Google Scholar 

  6. Steinberger RE, Holden PA. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol. 2005;71:5404–10. doi:10.1128/AEM.71.9.5404-5410.2005.

    Article  CAS  PubMed  Google Scholar 

  7. Bockelmann U, Janke A, Kuhn R, Neu TR, Wecke J, Lawrence JR, et al. Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett. 2006;262:31–8. doi:10.1111/j.1574-6968.2006.00361.x.

    Article  PubMed  Google Scholar 

  8. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487. doi:10.1126/science.295.5559.1487.

    Article  CAS  PubMed  Google Scholar 

  9. Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74:470–6. doi:10.1128/AEM.02073-07.

    Article  CAS  PubMed  Google Scholar 

  10. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4:e1000213. doi:10.1371/journal.ppat.1000213.

    Article  PubMed  Google Scholar 

  11. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8. doi:10.1128/EC.4.4.633-638.2005.

    Article  CAS  PubMed  Google Scholar 

  12. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol. 2009;7:e1000133. doi:10.1371/journal.pbio.1000133.

    Article  PubMed  Google Scholar 

  13. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55:999–1008. doi:10.1099/jmm.0.46569-0.

    Article  CAS  PubMed  Google Scholar 

  14. Paramonova E, Krom BP, van der Mei HC, Busscher HJ, Sharma PK. Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology. 2009;155:1997–2003. doi:10.1099/mic.0.021568-0.

    Article  CAS  PubMed  Google Scholar 

  15. Uppuluri P, Chaturvedi AK, Lopez-Ribot JL. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia. 2009;168:101–9. doi:10.1007/s11046-009-9205-9.

    Article  PubMed  Google Scholar 

  16. Thomas DP, Bachmann SP, Lopez-Ribot JL. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics. 2006;6:5795–804. doi:10.1002/pmic.200600332.

    Article  CAS  PubMed  Google Scholar 

  17. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology. 2007;153:2083–92. doi:10.1099/mic.0.2007/006031-0.

    Article  CAS  PubMed  Google Scholar 

  18. Kasai M, Francesconi A, Petraitiene R, Petraitis V, Kelaher AM, Kim HS, et al. Use of quantitative real-time PCR to study the kinetics of extracellular DNA released from Candida albicans, with implications for diagnosis of invasive candidiasis. J Clin Microbiol. 2006;44:143–50. doi:10.1128/JCM.44.1.143-150.2006.

    Article  CAS  PubMed  Google Scholar 

  19. Fowler J, Cohen L. Statistics for ornithologists. 2nd ed. British Trust for Ornithology. 1995.

  20. Vlassov VV, Laktionov PP, Rykova EY. Extracellular nucleic acids. Bioessays. 2007;29:654–67. doi:10.1002/bies.20604.

    Article  CAS  PubMed  Google Scholar 

  21. Hawser SP, Baillie GS, Douglas LJ. Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol. 1998;47:253–6. doi:10.1099/00222615-47-3-253.

    Article  CAS  PubMed  Google Scholar 

  22. Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol. 2006;9:133–7. doi:10.1016/j.mib.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  23. Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell. 2004;3:1062–5. doi:10.1128/EC.3.4.1062-1065.2004.

    Article  CAS  PubMed  Google Scholar 

  24. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3:1494–500. doi:10.1038/nport.2008.141.

    Article  CAS  PubMed  Google Scholar 

  25. Dimitrova P, Yordanov M, Danova S, Ivanovska N. Enhanced resistance against systemic Candida albicans infection in mice treated with C. albicans DNA. FEMS Immunol Med Microbiol. 2008;53:231–6. doi:10.1111/j.1574-695X.2008.00421.x.

    Article  CAS  PubMed  Google Scholar 

  26. Yordanov M, Dimitrova P, Danova S, Ivanovska N. Candida albicans double-stranded DNA can participate in the host defense against disseminated candidiasis. Microbes Infect. 2005;7:178–86. doi:10.1016/j.micinf.2004.10.011.

    Article  CAS  PubMed  Google Scholar 

  27. Miyazato A, Nakamura K, Yamamoto N, Mora-Montes HM, Tanaka M, Abe Y, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun. 2009;77:3056–64. doi:10.1128/IAI.00840-08.

    Article  CAS  PubMed  Google Scholar 

  28. Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;172:3059–69. doi:10.1128/IAI.69.4.2402-2406.2001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of J.L.L.-R. is supported by Grants number 5R21DE017294 from the National Institute of Dental & Craniofacial Research and R21AI080930 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCR, the NIAID or the NIH. M. M. was financially supported by a fellowship from Fundação para a Ciência e Tecnologia (FCT), Portugal (contract SFRH/BD/28222/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosário Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, M., Uppuluri, P., Thomas, D.P. et al. Presence of Extracellular DNA in the Candida albicans Biofilm Matrix and its Contribution to Biofilms. Mycopathologia 169, 323–331 (2010). https://doi.org/10.1007/s11046-009-9264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9264-y

Keywords

Navigation