Skip to main content
Log in

Integrated approaches to studying Medicago truncatula genome structure and function and their applications in biotechnology

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Plant genetic engineering has become an invaluable tool in plant research. Although plant transformation is a well-established technique, transgene expression is still unpredictable. Silencing may involve epigenetic modifications or nuclear and chromosomal localization of transgenes. In this way, understanding nuclear structure and organization is important not only for increasing our knowledge of fundamental aspects of the genome but also for taking the greatest advantage of inserting foreign genes and controlling their expression in biotechnological applications. Integrated approaches are clearly required in order to elucidate such complex processes. By combining the analysis of the physical position of transgenes with markers for epigenetic modifications in the plant genome we can better understand the factors affecting transgene expression levels and analyze the genomic environments of differentially expressed transgenes. Medicago truncatula Gaertn. has become a well-known model for the legume family and is used in studies ranging from nodulation to environmental stresses. More recently its use in biotechnology has been explored. In this report we describe the application of fluorescence in situ hybridization (FISH) to detect foreign DNA sequences and to determine the organization of the nucleolar organizer regions (NORs) genes in both metaphase chromosomes and interphase nuclei. We also studied chromatin distribution by immunodetection of epigenetic marks in M. truncatula interphase nuclei from tissue sections. We present evidence that M. truncatula is amenable to this kind of studies, which will in turn contribute to a better exploitation of biotechnology applications for this important plant family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abirached-Darmency M, Prado-Vivant E, Chelysheva L, Pouthier T (2005) Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH. Genome 48:556–561. doi:10.1139/G05-015

    Article  PubMed  CAS  Google Scholar 

  • Abranches R, Santos AP, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E (2000) Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J 24:713–723. doi:10.1111/j.1365-313X.2000.00908.x

    Article  PubMed  CAS  Google Scholar 

  • Abranches R, Marcel S, Arcalis E, Altmann F, Fevereiro P, Stoger E (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. J Biotechnol 120:121–134. doi:10.1016/j.jbiotec.2005.04.026

    Article  PubMed  CAS  Google Scholar 

  • Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E (2008) Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta 227:649–658. doi:10.1007/s00425-007-0647-3

    Article  PubMed  CAS  Google Scholar 

  • Ané JM, Lévy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V, Kim DJ, Debellé F, Rosenberg C, Cook DR, Bisseling T, Huguet T, Dénarié J (2002) Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol Plant Microbe Int 15:1108–1118. doi:10.1094/MPMI.2002.15.11.1108

    Article  Google Scholar 

  • Ané JM, Zhu H, Frugoli J (2008) Recent Advances in Medicago truncatula Genomics. Int J Plant Genomics 2008:11 Article ID 256597. doi:10.1155/2008/256597

  • Araújo SS, Duque ASRLA, Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss Org 78:123–131. doi:10.1023/B:TICU.0000022540.98231.f8

    Article  Google Scholar 

  • Benlloch R, Roque E, Ferrándiz C, Cosson V, Caballero T, Penmetsa RV, Beltrán JP, Cañas LA, Ratet P, Madueño F (2009) Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J 60:102–111. doi:10.1111/j.1365-313X.2009.03939.x

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Crow JA, Heuer ML, Wang X, Cannon EK, Dwan C, Lamblin AF, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau TM, Brown D, May GD, Kim D, Cook DR, Roe BA, Town CD, Young ND, Retzel EF (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol 138:38–46. doi:10.1104/pp.104.059204

    Article  PubMed  CAS  Google Scholar 

  • Caperta AD, Rosa M, Delgado M, Karimi R, Demidov D, Viegas W, Houben A (2008) Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet Genome Res 122:73–79. doi:10.1159/000151319

    Article  PubMed  CAS  Google Scholar 

  • Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S, May S, Scotti C, Calderini O (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23:3070–3081. doi:10.1105/tpc.111.087312

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    Article  PubMed  CAS  Google Scholar 

  • Castilho A, Cunha M, Afonso AR, Morais-Cecílio L, Fevereiro PS, Viegas W (2005) Genomic characterization and physical mapping of two fucosyltransferase genes in Medicago truncatula. Genome 48:168–716. doi:10.1139/G04-094

    Article  PubMed  CAS  Google Scholar 

  • Cerbah M, Kevei Z, Silijak-Yakovlev S, Kondorosi E, Kondorosi A, Trinh TH (1999) FISH chromosome mapping allowing karyotype analysis in Medicago truncatula lines Jemalong J5 and R-108-1. Mol Plant Microbe Interact 12:947–950. doi:10.1094/MPMI.1999.12.11.947

    Article  CAS  Google Scholar 

  • Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:45–46. doi:10.1007/s00299-003-0649-y

    Article  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294. doi:10.1073/pnas.0402251101

    Article  PubMed  CAS  Google Scholar 

  • de Jong H (2003) Visualizing DNA domains and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 46:943–946. doi:10.1139/G03-107

    Article  PubMed  Google Scholar 

  • Dong J, Kharb P, Cervera M, Hall TC (2001) The use of FISH in chromosomal localization of transgenes in rice. Methods Cell Sci 23:105–113. doi:10.1023/A:1013174406432

    Article  PubMed  Google Scholar 

  • Falistocco E (2000) Physical mapping of rRNA genes in Medicago sativa and M. glomerata by fluorescent in situ hybridization. J Hered 91:256–260

    Article  PubMed  CAS  Google Scholar 

  • Falistocco E, Falcinelli M (2003) Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn. Hereditas 138:1–5. doi:10.1034/j.1601-5223.2003.01540.x

    Article  PubMed  CAS  Google Scholar 

  • Falistocco E, Torricelli R, Falcinelli M (2002) Genomic relationships between Medicago murex Willd. and Medicago lesinsii E. Small. investigated by in situ hybridization. Theor Appl Genet 105:829–833. doi:10.1007/s00122-002-1055-5

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402. doi:10.1007/s00122-002-1055-5

    Article  PubMed  CAS  Google Scholar 

  • Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744. doi:10.1534/genetics.109.113753

    Article  PubMed  CAS  Google Scholar 

  • Florijn RJ, Bonden LA, Vrolijk H, Wiegant J, Vaandrager JW, Baas F, den Dunnen JT, Tanke HJ, van Ommen GJ, Raap AK (1995) High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum Mol Genet 4:831–836. doi:10.1093/hmg/4.5.831

    Article  PubMed  CAS  Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430. doi:10.1046/j.1365-313X.1996.09030421.x

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11:227–240. doi:10.1023/A:1022835825899

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB, Kim SI (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769:410–421. doi:10.1016/j.bbaexp.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  • Geraldo N, Abranches R (2008) Immunolocalization of histone modifications as a tool to visualize chromatin dynamics in plants. Microsc Microanal 14S3:130–133. doi:10.1017/S1431927608089642

    Article  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi:10.1093/nar/7.7.1869

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi P, Pires AS, Abranches R (2009) Cell line-dependent sorting of recombinant phytase in cell cultures of Medicago truncatula. Funct Plant Biol 36:431–444. doi:10.1071/FP08260

    Article  CAS  Google Scholar 

  • Iantcheva A, Chabaud M, Cosson V, Barascud M, Schutz B, Primard-Brisset C, Durand P, Barker DG, Vlahova M, Ratet P (2009) Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Rep 28:1563–1572. doi:10.1007/s00299-009-0755-6

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek A, Naganowska B, Wolko B (2009) Karyotyping of the narrow-leafed lupin (Lupinus angustifolius L.) by using FISH, PRINS and computer measurements of chromosomes. J Appl Genet 50:77–82

    Article  PubMed  CAS  Google Scholar 

  • Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A, Trinh TH (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653. doi:10.1007/s002999900168

    Article  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2001) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258. doi:10.1023/A:1023941407376

    Article  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Google Scholar 

  • Koornneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194. doi:10.1023/A:1022827624082

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58. doi:10.1046/j.1365-313x.2001.01057.x

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283. doi:10.1007/s00412-004-0315-3

    Article  PubMed  CAS  Google Scholar 

  • Kumar S (2011) Biotechnological advancements in alfalfa improvement. J Appl Genet 52:111–124. doi:10.1007/s13353-011-0028-2

    Article  PubMed  CAS  Google Scholar 

  • Kumpatla SP, Chandrasekharan MB, Iyer LM, Guofu L, Hall TC (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104. doi:10.1016/S1360-1385(97)01194-1

    Article  Google Scholar 

  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691. doi:10.1093/hmg/5.5.685

    Article  PubMed  CAS  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109. doi:10.1186/1471-2229-11-109

    Article  PubMed  CAS  Google Scholar 

  • Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234. doi:10.1104/pp.105.070326

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148. doi:10.1016/S1369-5266(98)80016-2

    Article  PubMed  CAS  Google Scholar 

  • Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS ONE 5:e9519. doi:10.1371/journal.pone.0009519

    Article  PubMed  Google Scholar 

  • Neves LO, Duque SRL, Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405. doi:10.1007/s002990050593

    Article  Google Scholar 

  • Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Fukui K (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 18:287–299. doi:10.1007/s00412-004-0315-3

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    PubMed  CAS  Google Scholar 

  • Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417. doi:10.1146/annurev.arplant.59.032607.092839

    Article  PubMed  CAS  Google Scholar 

  • Phan HT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114:549–558. doi:10.1007/s00122-006-0455-3

    Article  PubMed  Google Scholar 

  • Pires AS, Cabral MG, Fevereiro P, Stoger E, Abranches R (2008) High levels of stable phytase accumulate in the culture medium of transgenic Medicago truncatula cell suspension cultures. Biotechnol J 3:916–923. doi:10.1002/biot.200800044

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L, Scotti C, Carelli M, Scaramelli L, Bruschi G, Cosson V, Ratet P, de Larembergue H, Duc G, Piano E, Arcioni S (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129. doi:10.1186/1756-0500-1-129

    Article  PubMed  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79. doi:10.1016/j.plaphy.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  • Rispail N, Kaló P, Kiss GB, Ellis THN, Gallardo K, Thompson RD, Prats E, Larrainzar E, Ladrera R, González EM, Arrese-Igor C, Ferguson BJ, Gresshoff PM, Rubiales D (2009) Model legumes to contribute to Faba bean breeding. Field Crops Res 115:253–269. doi:10.1016/j.fcr.2009.03.014

    Article  Google Scholar 

  • Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307. doi:10.1007/s00122-009-0981-x

    Article  PubMed  CAS  Google Scholar 

  • Rosato M, Castro M, Rosselló JA (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot 102:15–22. doi:10.1093/aob/mcn055

    Article  PubMed  Google Scholar 

  • Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula: implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791

    Article  CAS  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, Stougaard J (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683

    PubMed  CAS  Google Scholar 

  • Santos AP, Abranches R, Stoger E, Beven A, Viegas W, Shaw PJ (2002) The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J Cell Sci 115:4597–4605. doi:10.1242/jcs.00160

    Article  PubMed  CAS  Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18. doi:10.1186/1746-4811-2-18

    Article  PubMed  Google Scholar 

  • Schnabel E, Kulikova O, Penmetsa RV, Bisseling T, Cook DR, Frugoli J (2003) An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome 46:665–672. doi:10.1139/G03-019

    Article  PubMed  CAS  Google Scholar 

  • Seijo JG, Fernández A (2001) Cytogenetic analysis in Lathyrus japonicus Willd. (Leguminosae). Caryologia 54:173–179

    Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697. doi:10.1139/gen-44-4-691

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347. doi:10.1111/j.1365-313X.2008.03418.x

    Article  PubMed  CAS  Google Scholar 

  • Talukdar D (2009) Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies. J Genet 88:165–175. doi:10.1007/s12041-009-0024-z

    Article  PubMed  Google Scholar 

  • Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1. doi:10.1186/1471-2229-2-1

    Article  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716. doi:10.1007/s00425-009-1078-0

    Article  PubMed  CAS  Google Scholar 

  • Trinh T, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata in vitro lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355. doi:10.1007/s002990050405

    Article  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578. doi:10.1016/j.tibtech.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  • van Gijlswijk RP, Zijlmans HJ, Wiegant J, Bobrow MN, Erickson TJ, Adler KE, Tanke HJ, Raap AK (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45:375–382

    Article  PubMed  Google Scholar 

  • Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) Nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702. doi:10.1104/pp.104.049064

    Article  PubMed  CAS  Google Scholar 

  • Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarié J, Long SR (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412. doi:10.1073ypnas.230439797

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169. doi:10.1073/pnas.0802518105

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Udvardi MK (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201. doi:10.1016/j.pbi.2008.11.005

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon R (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-o-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340. doi:10.1105/tpc.109.067819

    Article  PubMed  CAS  Google Scholar 

  • Zhong XB, Lizardi PM, Huang X-H, Bray-Ward PL, Ward DC (2001) Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc Natl Acad Sci USA 98:3940–3945. doi:10.1073/pnas.061026198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Augusta Barão and Margarida Delgado for technical assistance and Wanda Viegas and John Spall for help with the manuscript. This work was supported by Fundação para a Ciência e a Tecnologia through grant PEst-OE/EQB/LA0004/2011 and fellowship SFRH/BPD/65686/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abranches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, A.S., Geraldo, N., Cerqueira, T. et al. Integrated approaches to studying Medicago truncatula genome structure and function and their applications in biotechnology. Mol Breeding 30, 1431–1442 (2012). https://doi.org/10.1007/s11032-012-9729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9729-4

Keywords

Navigation