Skip to main content
Log in

Sliding onset of nanoclusters: a new AFM-based approach

  • Asperity contacts & lubrication aspects
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the last twenty years the Atomic Force Microscope (AFM) is become one of the most important instruments to perform characterization at the nanoscale and to achieve direct control of nano-objects. In this paper a quantitative method to estimate the detachment energy of gold spherical nanoclusters with typical diameters of 13, 24 and 42 nm deposited on silicon dioxide and Highly Oriented Pyrolytic Graphite (HOPG) by AFM measures with Amplitude Modulation (AM-AFM) feedback is presented. It is based on the use of AFM tip oscillations to induce clusters detachments and on the substrate mapping with phase signal. With this powerful method is possible to move in a very controlled way nanoparticles selected by dimensions. All experiments have been performed in air conditions using a commercial AFM microscope with cantilevers characterized by nominal spring constants lying between 5 and 50 N/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM::

Atomic Force Microscopy

AM-AFM::

Amplitude Modulation AFM

FM-AFM::

Frequency Modulation AFM

NC-AFM::

Non Contact AFM

UHV::

Ultra High Vacuum

HOPG::

Highly Oriented Pyrolytic Graphite

SEM::

Scanning Electron Microscopy

TEM::

Transmission Electron Microscopy

FFM::

Friction Force Microscopy

SFA::

Surface Force Apparatus

References

  1. Czichos H (2001) Tribology and its many facets: from macroscopic to microscopic and nano-scale phenomena. Meccanica 36:605–615

    Article  MATH  Google Scholar 

  2. Robbins MO, Muser MH (2000) Computer simulation of friction, lubrication and wear. In: Bhushan B (ed) Handbook of modern tribology. CRC Press, Boca Raton

    Google Scholar 

  3. Muser MH, Urbakh M, Robbins MO (2003) Statistical mechanics of static and low-velocity kinetic friction. Adv Chem Phys 126:187

    Article  Google Scholar 

  4. Vanossi A, OM Braun (2007) Driven dynamics of simplified tribological models. J Phys Condens Matter 19:305017–305037

    Article  Google Scholar 

  5. Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E (2008) Atomic-scale friction modulated by a buried interface: Combined atomic and friction force microscopy experiments. Phys Rev B 78:045432-1-5

    ADS  Google Scholar 

  6. Gnecco E, Meyer E (2007) Fundamentals of friction and wear on the nanoscale. Springer, Berlin

    Book  Google Scholar 

  7. Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  8. Persson BNJ (2000) Sliding friction: physical principles and applications. Springer, Berlin

    MATH  Google Scholar 

  9. Szlufarska I, Chandross M, Carpick RW (2008) Recent Advances in single-asperity nanotribology. J Phys D, Appl Phys 41:123001–123039

    Article  ADS  Google Scholar 

  10. Socoliuc A, Bennewitz R, Gnecco E, Meyer E (2004) Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultra low friction. Phys Rev Lett 92:134301-1-4

    Article  ADS  Google Scholar 

  11. Schwarz UD, Zwoerner O, Koester P, Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads. I Carbon compounds. Phys Rev B 56:6987–6996

    Article  ADS  Google Scholar 

  12. Dietzel D, Ritter C, Moenninghoff T, Fuchs H, Schirmeisen A, Schwarz UD (2008) Friction duality observed during nanoparticle sliding. Phys Rev Lett 101:125505-1-4

    Article  ADS  Google Scholar 

  13. Dietzel D, Feldmann M, Fuchs H, Schwarz UD, Schirmeisen A (2009) Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett 95:053104

    Article  ADS  Google Scholar 

  14. Dietzel D, Feldmann M, Herding C, Schwarz UD, Schirmeisen A (2010) Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Tribol Lett 39(3):273–281

    Article  Google Scholar 

  15. Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Cadete Santos Aires F (1996) Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci 367:276–292

    Article  ADS  Google Scholar 

  16. Luedtke WD, Landman U (1999) Slip diffusion and Levy flights of an adsorbed gold nanocluster. Phys Rev Lett 82:3835–3838

    Article  ADS  Google Scholar 

  17. Pisov S, Tosatti E, Tartaglino U, Vanossi A (2007) Gold clusters sliding on graphite: a possible quartz microbalance experiment? J Phys, Condens Matter 19:305015–305019

    Article  Google Scholar 

  18. Guerra R, Tartaglino U, Vanossi A, Tosatti E (2010) Ballistic nanofriction. Nat Mater 9:634–637

    Article  ADS  Google Scholar 

  19. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  20. Garcia R, Magerle R, Perez R (2007) Nanoscale compositional mapping with gentle forces. Nat Mater 6:405–411

    Article  ADS  Google Scholar 

  21. Garcia R, Gomez CJ, Martinez NF, Patil S, Dietz C, Magerle R (2006) Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys Rev Lett 97:016103:016106

    ADS  Google Scholar 

  22. Martinez NF, Garcia R (2006) Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17:167–172

    Article  ADS  Google Scholar 

  23. Anczykowski B, Gotsmann B, Fuchs H, Cleveland JP, Elings VB (1999) How to measure energy dissipation in dynamic mode atomic force microscopy. Appl Surf Sci 140:376–382

    Article  ADS  Google Scholar 

  24. Mougin K, Gnecco E, Rao A, Cuberes MT, Jayaraman S, McFarland EW, Haidara H, Meyer E (2008) Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum vs ambient atmosphere). Langmuir 24:1577–1581

    Article  Google Scholar 

  25. Paolicelli G, Rovatti M, Vanossi A, Valeri S (2009) Controlling single cluster dynamics at the nanoscale. Appl Phys Lett 95:143121-1-3

    Article  ADS  Google Scholar 

  26. Rao A, Gnecco E, Marchetto D, Mougin K, Schönenberger M, Valeri S, Meyer E (2009) The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 20:115706–115712

    Article  ADS  Google Scholar 

  27. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  ADS  Google Scholar 

  28. Aruliah DA, Muser MH, Schwarz UD (2005) Calculation of the threshold force and threshold power to move adsorbed nanoparticles. Phys Rev B 71:085406

    Article  ADS  Google Scholar 

  29. Ritter C, Heyde M, Schwarz UD, Rademann K (2002) Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir 18:7798–7803

    Article  Google Scholar 

  30. Ritter C, Heyde M, Stegemann B, Rademann K (2005) Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys Rev B 71:085405-1-7

    Article  ADS  Google Scholar 

  31. Rao A, Wille ML, Gnecco E, Mougin K, Meyer E (2009) Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys Rev B 80:193405

    Article  ADS  Google Scholar 

  32. Paolicelli G, Mougin K, Vanossi A, Valeri S (2008) Adhesion detachment and movement of gold nanoclusters induced by dynamic AFM. J Phys Condens Matter 20:354011–354016

    Article  Google Scholar 

  33. Maruyama Y (2004) Temperature dependence of Levy-type stick-slip diffusion of a gold nanoclusters on graphite. Phys Rev B 69:245408-1-6

    Article  ADS  Google Scholar 

  34. Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple model. Rev Mod Phys 71:1695–1735

    Article  ADS  Google Scholar 

  35. Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Cadete Santos Aires F (1996) Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci 367:276–292

    Article  ADS  Google Scholar 

  36. Huang X, Qian W, El-Sayed IH, Ma El-Sayed (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39:747–753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rovatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovatti, M., Paolicelli, G., Vanossi, A. et al. Sliding onset of nanoclusters: a new AFM-based approach. Meccanica 46, 597–607 (2011). https://doi.org/10.1007/s11012-010-9366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9366-0

Keywords

Navigation