Skip to main content
Log in

Numerical investigation of a third-order ODE from thin film flow

  • Original Article
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We compare two finite difference schemes to solve the third-order ordinary differential equation y'''=y k from thin film flow. The boundary conditions come from Tanner’s problem for the surface tension driven flow of a thin film. We show that a central difference approximation to the third derivative in the model equation produces a solution curve with oscillations. A difference scheme based on a combination of forward and backward differences produces a smooth accurate solution curve. Both the 0-stability and von Neumann stability properties of the different finite difference schemes are analyzed. The solution curves obtained from both approaches are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84:125–143

    Article  ADS  MATH  Google Scholar 

  2. Myers TG (1998) Thin films with high surface tension. SIAM Rev 40:441–462

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Boatto S, Kadanoff LP, Olla P (1993) Traveling-wave solutions to thin film equations. Phys Rev E 48:4423–4431

    Article  MathSciNet  ADS  Google Scholar 

  4. Almgren R (1996) Singularity formation in Hele-Shaw bubbles. Phys Fluids 8:344–352

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Constantin P, Dupont TF, Goldstein RE, Kadanoff LP, Shelley MJ, Zhou S-M (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47:4169–4181

    Article  MathSciNet  ADS  Google Scholar 

  6. Dupont TF, Goldstein RE, Kadanoff LP, Zhou S-M (1993) Finite-time singularity formation in Hele-Shaw systems. Phys Rev E 47:4182–4196

    Article  MathSciNet  ADS  Google Scholar 

  7. Goldstein RE, Pesci AI, Shelley MJ (1998) Instabilities and singularities in Hele-Shaw flow. Phys Fluids 10:2701–2723

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Pesci AI, Goldstein RE, Shelley MJ (1999) Domain of convergence of perturbative solutions for Hele-Shaw flow near interface collapse. Phys Fluids 11:2809–2811

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Greenspan HP, McCay BM (1981) On the wetting of a surface by a very viscous fluid. Stud Appl Math 64:95–112

    MathSciNet  MATH  Google Scholar 

  10. Hocking LM (1981) Sliding and spreading of thin two dimensional drops. Q J Mech Appl Math 34:37–55

    Article  MathSciNet  MATH  Google Scholar 

  11. Lacey AA (1982) The motion with slip of a thin viscous droplet over a solid surface. Stud Appl Math 67:217–230

    MathSciNet  MATH  Google Scholar 

  12. Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D, Appl Phys 12:1473–1484

    Article  ADS  Google Scholar 

  13. Bernis F (1996) Finite speed of propagation for thin viscous flow when 2<n<3. C R Acad Sci I, Math 322:1169–1174

    MathSciNet  MATH  Google Scholar 

  14. Bernis F, Peletier LA (1996) Two problems from draining flows involving third-order ordinary differential equations. SIAM J Math Anal 27:515–527

    Article  MathSciNet  MATH  Google Scholar 

  15. Troy WC (1993) Solutions of third-order differential equations relevant to draining and coating flows. SIAM J Math Anal 24:155–171

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertozzi AL (1996) Symmetric singularity formation in lubrication-type equations for interface motion. SIAM J Appl Math 56:681–714

    Article  MathSciNet  MATH  Google Scholar 

  17. Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. Not Am Math Soc 45:689–697

    MathSciNet  MATH  Google Scholar 

  18. Howes FA (1983) The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J Appl Math 43:993–1004

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Tuck EO, Schwartz LW (1990) Numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev 32:453–469

    Article  MathSciNet  MATH  Google Scholar 

  20. Duffy BR, Wilson SK (1997) A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl Math Lett 10:63–68

    Article  MathSciNet  MATH  Google Scholar 

  21. Ford WF (1992) A third-order differential equation. SIAM Rev 34:121–122

    Article  Google Scholar 

  22. Buckingham R, Shearer M, Bertozzi A (2003) Thin film traveling waves and the Navier slip condition. SIAM J Appl Math 63:722–744

    Article  MathSciNet  MATH  Google Scholar 

  23. Momoniat E, Selway TA, Jina K (2007) Analysis of Adomian decomposition applied to a third-order ordinary differential equation from thin film flow. Nonlinear Anal, Ser A, Theory Methods Appl 66:2315–2324

    Article  MathSciNet  MATH  Google Scholar 

  24. Momoniat E (2009) Symmetries, first integrals and phase planes of a third order ordinary differential equation from thin film flow. Math Comput Model 49:215–225

    Article  MathSciNet  MATH  Google Scholar 

  25. Lambert JD (1991) Numerical methods for ordinary differential systems. Wiley, Chichester

    MATH  Google Scholar 

  26. Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, Chichester

    Book  MATH  Google Scholar 

  27. Aceto L, Trigiante D (2007) The stability problem for linear multistep methods: old and new results. J Comput Appl Math 210:2–12

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  29. Lax PD, Richtmyer RD (1956) Survey of the stability of linear finite difference equations. Commun Pure Appl Math 9:267–293

    Article  MathSciNet  MATH  Google Scholar 

  30. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw–Hill, New York

    MATH  Google Scholar 

  31. Geršgorin SA (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Dokl Akad Nauk (A), Otd Fiz-Mat Nauk 749–754

  32. Varga RS (2004) Geršgorin and his circles. Springer, New York

    Book  MATH  Google Scholar 

  33. Myers TG, Charpin JPF (2000) The effect of the Coriolis force on axisymmetric rotating thin film flows. Int J Non-linear Mech 36:629–635

    Article  Google Scholar 

  34. Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imag Technol 13:122–130

    Google Scholar 

  35. Forcada ML, Mate CM (1993) The flow of thin viscous liquid films on rotating disks. J Colloid Interface Sci 160:218–225

    Article  Google Scholar 

  36. Dandapat BS, Ray PC (1994) The effect of thermocapillarity on the flow of a thin liquid film on a rotating disc. J Phys D, Appl Phys 27:2041–2045

    Article  ADS  Google Scholar 

  37. Leshev I, Peev G (2003) Film flow on a horizontal rotating disk. Chem Eng Proc 42:925–929

    Article  Google Scholar 

  38. Huang K-H, Chou F-C, Yang C-P (2007) Visualization of the effect of liquid dispensing method during spin coating. Jpn J Appl Phys 46:5238–5244

    Article  ADS  Google Scholar 

  39. Afsar-Siddiqui AB, Luckham PF, Matar OK (2003) The spreading of surfactant solutions on thin liquid films. Adv Colloid Interface Sci 106:183–236

    Article  Google Scholar 

  40. Gaver DP III, Grotberg JB (1990) The dynamics of a localized surfactant on a thin film. J Fluid Mech 213:127–148

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Momoniat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momoniat, E. Numerical investigation of a third-order ODE from thin film flow. Meccanica 46, 313–323 (2011). https://doi.org/10.1007/s11012-010-9310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9310-3

Keywords

Navigation