Skip to main content

Advertisement

Log in

Methylglyoxal-induced cytotoxicity in neonatal rat brain: a role for oxidative stress and MAP kinases

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed N, Battah S, Karachalias N, Babaei-Jadidi R, Horányi M, Baróti K, Hollan S, Thornalley PJ (2003) Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochim Biophys Acta 1639:121–132

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Mechanisms of cell communication. In: Anderson M, Granum S (eds) Molecular biology of the cell, 5th edn. Garland Science, New York, pp 879–964

    Google Scholar 

  • Beeri MS, Moshier E, Schmeidler J, Godbold J, Uribarri J, Reddy S, Sano M, Grossman HT, Cai W, Vlassara H, Silverman JM (2011) Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev 132:583–587

    Article  PubMed  CAS  Google Scholar 

  • Chan WH, Wu HJ, Shiao NH (2007) Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem 100:1056–1069

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Huang XB, Li ZX, Yin LL, Chen WQ, Li L (2010) Tenuigenin protects cultured hippocampal neurons against methylglyoxal-induced neurotoxicity. Eur J Pharmacol 645:1–8

    Article  PubMed  CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  PubMed  CAS  Google Scholar 

  • de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G (2007) Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells—protection by carbonyl scavengers. Neurobiol Aging 28:1044–1050

    Article  PubMed  Google Scholar 

  • Di Loreto S, Caracciolo V, Colafarina S, Sebastiani P, Gasbarri A, Amicarelli F (2004) Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1 beta and nerve growth factor in cultured hippocampal neuronal cells. Brain Res 1006:157–167

    Article  PubMed  Google Scholar 

  • Di Loreto S, Zimmitti V, Sebastiani P, Cervelli C, Falone S, Amicarelli F (2008) Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 40:245–257

    Article  PubMed  Google Scholar 

  • Driver AS, Kodavanti PR, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  PubMed  CAS  Google Scholar 

  • Falone S, D’Alessandro A, Mirabilio A, Petruccelli G, Cacchio M, Di Ilio C, Di Loreto S, Amicarelli F (2012) Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex. PLoS One 7:e31401

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Subramaniam R, Weiss MF, Monnier VM (2003) Methylglyoxal-bovine serum albumin stimulates tumor necrosis factor alpha secretion in RAW 264,7 cells through activation of mitogen-activating protein kinase, nuclear factor kappaB and intracellular reactive oxygen species formation. Arch Biochem Biophys 409:274–286

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga M, Miyata S, Liu BF, Miyazaki H, Hirota Y, Higo S, Hamada Y, Ueyama S, Kasuga M (2004) Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem Biophys Res Commun 320:689–695

    Article  PubMed  CAS  Google Scholar 

  • Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  PubMed  CAS  Google Scholar 

  • Haut SR, Velisková J, Moshé SJ (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3:608–617

    Article  PubMed  Google Scholar 

  • Huang SM, Hsu CL, Chuang HC, Shih PH, Wu CH, Yen GC (2008) Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology 29:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim OS, Kim CS, Kim NH, Kim JS (2010) Cytotoxic role of methylglyoxal in rat retinal pericytes: involvement of a nuclear factor-kappaB and inducible nitric oxide synthase pathway. Chem Biol Interact 188:86–93

    Article  PubMed  CAS  Google Scholar 

  • Kim H-A, Kim K-J, Seo KH, Lee H-K, Im S-Y (2012) PTEN/MAPK pathways play a key role in platelet-activating factor-induced experimental pulmonary tumor metastasis. FEBS Lett 586:4296–4302

    Article  PubMed  CAS  Google Scholar 

  • Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, Asai K, Joh T (2009) Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Knockaert L, Berson A, Ribault C, Prost PE, Fautrel A, Pajaud J, Lepage S, Lucas-Clerc C, Bégué JM, Fromenty B, Robin MA (2012) Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Lab Investig 92:396–410

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G (2005) Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann N Y Acad Sci 1043:211–216

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Lee HK, Seo IA, Suh GJ, Lee HJ, Park HT (2009) A novel mechanism of methyglyoxal cytotoxicity in neuroglial cells. J Neurochem 108:273–284

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maeta K, Mori K, Takatsume Y, Izawa S, Inoue Y (2005) Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol Lett 243:87–92

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Portero-Otin M, Pamplona R, Ferrer I (2010) Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 20:281–297

    Article  PubMed  CAS  Google Scholar 

  • Min C, Kang E, Yu SH, Shinn SH, Kim YS (1999) Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract 46:197–202

    Article  PubMed  CAS  Google Scholar 

  • Morgan PE, Dean RT, Davies MJ (2002) Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys 403:259–269

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Munch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143

    Article  PubMed  CAS  Google Scholar 

  • Pal A, Bhattacharya I, Bhattacharya K, Mandal C, Ray M (2009) Methylglyoxal induced activation of murine peritoneal macrophages and surface markers of T lymphocytes in sarcoma-180 bearing mice: involvement of MAP kinase, NFkappa beta signal transduction pathway. Mol Immunol 46:2039–2044

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy R, Yan SF, Schmidt AM (2006) Methylglyoxal comes of AGE. Cell 124:258–260

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, de Assis AM, Battu CE, Rieger DK, Hansen F, Sordi F, Longoni A, Hoefel AL, Farina M, Gonçalves CA, Souza DO, Perry ML (2010) Effects of glyoxal or methylglyoxal on the metabolism of amino acids, lactate, glucose and acetate in the cerebral cortex of young and adult rats. Brain Res 1315:19–24

    Article  PubMed  CAS  Google Scholar 

  • Sena CM, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça RM (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65:497–506

    Article  PubMed  CAS  Google Scholar 

  • Sheng B, Gong K, Niu Y, Liu L, Yan Y, Lu G, Zhang L, Hu M, Zhao N, Zhang X, Tang P, Gong Y (2009) Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer’s disease. Radic Biol Med 46:1362–1375

    Article  CAS  Google Scholar 

  • Shuvaev VV, Laffont I, Serot JM, Fujii J, Taniguchi N, Siest G (2001) Increased protein glycation in cerebrospinal fluid of Alzheimer’s disease. Neurobiol Aging 397–402

  • Srikanth V, Westcott B, Forbes J, Phan TG, Beare R, Venn A, Pearson S, Greenaway T, Parameswaran V, Münch G (2012) Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci. 2012 ahead of print

  • Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749:44–52

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348

    Article  PubMed  CAS  Google Scholar 

  • Thornalley PJ (2005) Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111–117

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Tomita S, Ishizawa K, Abe S, Ikeda Y, Kihira Y, Tamaki T (2010) Dietary nitrite ameliorates renal injury in L-NAME-induced hypertensive rats. Nitric Oxide 22:98–103

    Google Scholar 

  • Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara H (2007) Circulating glycotoxins and dietary advanced glycation end products: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 62:427–433

    Article  PubMed  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  • Whitaker AN, McKay DG (1969) Studies of catecholamine shock. I. Disseminated intravascular coagulation. Am J Pathol 56:153–176

    PubMed  CAS  Google Scholar 

  • Xue M, Rabbani N, Thornalley PJ (2011) Glyoxalase in ageing. Semin Cell Dev Biol 22:293–301

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978

    Article  PubMed  CAS  Google Scholar 

  • Yim HS, Kang SO, Hah YC, Chock PB, Yim MB (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal A model study of protein-cross-linked free radicals. J Biol Chem 270:28228–28233

    Article  PubMed  CAS  Google Scholar 

  • Zhang WF, Xu YY, Xu KP, Wu WH, Tan GS, Li YJ, Hu CP (2012) Inhibitory effect of selaginellin on high glucose-induced apoptosis in differentiated PC12 cells: role of NADPH oxidase and LOX-1. Eur J Pharmacol 694:60–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Propesq-UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Pessoa-Pureur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimfarth, L., Loureiro, S.O., Pierozan, P. et al. Methylglyoxal-induced cytotoxicity in neonatal rat brain: a role for oxidative stress and MAP kinases. Metab Brain Dis 28, 429–438 (2013). https://doi.org/10.1007/s11011-013-9379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9379-1

Keywords

Navigation