Skip to main content
Log in

Molecular susceptibility to glycation and its implication in diabetes mellitus and related diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The modification of free amino groups on proteins, lipids, and nucleic acids by non-enzymatic glycosylation produce a variety of complex structures named advanced glycation end products (AGEs). Glycation of these molecules participate in the development of diabetic complications and related diseases. Diabetes mellitus is characterized by short-term metabolic changes in lipid and protein metabolism, and long-term irreversible changes in vascular and connective tissue. AGEs are directly implicated in the development of chronic complications in diabetes such as nephropathy, rethinopathy, neuropathy, and other related diseases such as atherosclerosis, heart disease, stroke, and peripheral vascular disease. In this review, we aim to explain how glycation occurs in different molecules and what the pathological consequence of AGE formation in diabetes mellitus and other diseases are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  CAS  PubMed  Google Scholar 

  2. Signh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    Article  Google Scholar 

  3. Knecht KJ, Feather MS, Baynes JW (1992) Detection of 3-deoxyfructose and 3-deoxyglucosone in human urine and plasma: evidence for intermediate stages of the Maillard reaction in vivo. Arch Biochem Biophys 294:130–137

    Article  CAS  PubMed  Google Scholar 

  4. Chappey O, Dosquet C, Wautier MP, Wautier JL (1997) Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest 27:97–108

    Article  CAS  PubMed  Google Scholar 

  5. Zyzak DV, Richardson JM, Thorpe SR, Baynes JW (1995) Formation of reactive intermediates from Amadori compounds under physiological conditions. Arch Biochem Biophys 316:547–554

    Article  CAS  PubMed  Google Scholar 

  6. Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211:491–493

    Article  CAS  PubMed  Google Scholar 

  7. Sell D, Namet I, Monnier VM (2010) Partial characterization of the molecular nature of collagen-linked fluorescence: role of diabetes and end-stage renal disease. Arch Biochem Biophys 493:192–206

    Article  CAS  PubMed  Google Scholar 

  8. Kunkel HG, Wallenius G (1955) New hemoglobins in normal adult blood. Science 122:228–229

    Article  Google Scholar 

  9. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhemoglobin at 1.74 Å. J Mol Biol 175:159–174

    Article  CAS  PubMed  Google Scholar 

  10. Allen DW, Schroeder WA, Balog J (1958) Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin. J Am Chem Soc 80:1628–1634

    Article  CAS  Google Scholar 

  11. Chiou SH, Chylack LT Jr, Tung WH, Bunn HF (1981) Nonenzymatic glycosylation of bovine lens crystallins. J Biol Chem 256:5176–5180

    CAS  PubMed  Google Scholar 

  12. Shapiro R, McManus MJ, Zalur C, Bunn HF (1980) Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem 255:3120–3127

    CAS  PubMed  Google Scholar 

  13. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    Article  CAS  PubMed  Google Scholar 

  14. Liddington R, Derewenda Z, Dodson G, Harris D (1988) Structure of the liganded T state of hemoglobin identifies the origin of cooperative oxygen binding. Nature 331:725–728

    Article  CAS  PubMed  Google Scholar 

  15. Koeing RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976) Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus. N Eng J Med 295:417–420

    Article  Google Scholar 

  16. Perutz MF (1978) Hemoglobin structure and respiratoy transport. Sci Am 239:92–125

    Article  CAS  PubMed  Google Scholar 

  17. James PE, Lang D, Tufnell-Barret T, Milsom AB, Frenneaux MP (2004) Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circ Res 94:976–983

    Article  CAS  PubMed  Google Scholar 

  18. Gabbay KH, Sosenko JM, Banuchi GA, Mininsohn MJ, Flückiger R (1979) Glycosylated hemoglobins: increased glycosylation of hemoglobin A in diabetic patients. Diabetes 28:337–340

    Article  CAS  PubMed  Google Scholar 

  19. Trivelli LA, Ranney HM, Lai HT (1971) Hemoglobin components in patients with diabetes mellitus. N Engl J Med 284:353–357

    Article  CAS  PubMed  Google Scholar 

  20. Drysdale JM, Righetti P, Bunn HF (1971) The separation of human and animal hemoglobins by isoelectric focusing in polyacrylamide gel. Biochem Biophys Acta 229:42–50

    CAS  PubMed  Google Scholar 

  21. Ambler J, Janik B, Walker G (1983) Measurement of glyocosylated hemoglobin on cellulose acetate membranes by mobile affinity electrophoreses. Clin Chem 29:340–343

    CAS  PubMed  Google Scholar 

  22. Johnson R, Metcalf P, Baker J (1982) Fructosamine: a new approach to the estimation of serum glycoproteins. An index of diabetic control. Clin Chim Acta 127:87–95

    Article  Google Scholar 

  23. Moore JC, Outlaw MC, Barnes AJ, Turner RC (1986) Glycosylated plasma protein measurement by a semi-automated method. Ann Clin Biochem 23:198–203

    CAS  PubMed  Google Scholar 

  24. Wolffenbuttel BH, Giordano D, Founds HW, Bucala R (1996) Long-term assessment of glucose control by haemoglobin-AGE measurement. Lancet 347:513–515

    Article  CAS  PubMed  Google Scholar 

  25. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  26. Iberg N, Flückiger R (1986) Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J Biol Chem 261:13542–13545

    CAS  PubMed  Google Scholar 

  27. Bucala R, Cerami A (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol 23:1–34

    Article  CAS  PubMed  Google Scholar 

  28. Eble AS, Thorpe SR, Baynes JW (1983) Nonenzimatic glucosylation and glucose-dependent crosslinking of protein. J Biol Chem 258:9406–9412

    CAS  PubMed  Google Scholar 

  29. Chace KV, Carubelli R, Nordquist RE (1991) The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch Biochem Biophys 288:473–480

    Article  CAS  PubMed  Google Scholar 

  30. Vishwanath V, Frank KE, Elmets CA, Dauchot PJ, Monnier VM (1986) Glycation of skin collagen in type I diabetes mellitus, correlation with long-term complications. Diabetes 35:916–921

    Article  CAS  PubMed  Google Scholar 

  31. Porte D Jr, Schwartz MW (1996) Diabetes complications: why is glucose potentially toxic? Science 272:699–700

    Article  CAS  PubMed  Google Scholar 

  32. Tijburg LB, Geelen MJ, van Golde LM (1998) Regulation of the biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the liver. Biochem Biophys Acta 1004:283–291

    Google Scholar 

  33. Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90:6434–6438

    Article  CAS  PubMed  Google Scholar 

  34. Aguilar-Hernández M, Méndez JD (2007) In vitro glycation of brain aminophospholipids by acetoacetate and its inhibition by urea. Biomed Pharmacother 61:693–697

    Article  PubMed  Google Scholar 

  35. Segrest JP, Jackson RL, Morrisett JD, Gotto AM Jr (1974) A molecular theory of lipid–protein interactions in the plasma lipoproteins. FEBS Lett 38:247–258

    Article  CAS  PubMed  Google Scholar 

  36. Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, Vlassara H (1994) Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA 91:9441–9445

    Article  CAS  PubMed  Google Scholar 

  37. Virella G, Thorpe SR, Alderson NL, Stephan EM, Atchley D, Wagner F, Lopes-Virella MF, the DCCT/EDIC Research Group (2003) Autoimmune response to advanced glycosylation end-products of human LDL. J Lipid Res 44:487–493

    Article  CAS  PubMed  Google Scholar 

  38. Gugliucci A, Bendayan M (1995) Histones from diabetic rats contain increased levels of advanced glycation end products. Biochem Biophys Res Commun 212:56–62

    Article  CAS  PubMed  Google Scholar 

  39. al-Abed Y, Schleicher E, Voelter W, Liebich H, Papoulis A, Bucala R (1998) Identification of N2-(1-carboxymethyl)guanine (CMG) as a guanine advanced glycation end product. Bioorg Med Chem Lett 8:2109–2110

    Article  CAS  PubMed  Google Scholar 

  40. Takenaka A, Fujita S, Sasada Y (1982) Interactions of nucleic-acid base-pairs with acidic side chains of protein. Crystal structures of adenine: 1-(2-carboxyethyl)uracil (1:1) complex and 1-methylcytosine: 9-(2-carboxyethyl)guanine (1:1) complex. Nucleic Acids Symp Ser 11:281–284

    CAS  PubMed  Google Scholar 

  41. Zurlo J, Curphey TJ, Hiley R, Longnecker DS (1982) Identification of 7-carboxymethylguanine in DNA from pancreatic acinar cells exposed to azaserine. Cancer Res 42:1286–1288

    CAS  PubMed  Google Scholar 

  42. Papoulis A, al-Abed Y, Bucala R (1995) Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation endproduct. Biochemistry 34:648–655

    Article  CAS  PubMed  Google Scholar 

  43. Seidel W, Pischetsrieder M (1998) Reaction of guanosine with glucose under oxidative conditions. Bioorg Med Chem Lett 8:2017–2022

    Article  CAS  PubMed  Google Scholar 

  44. Lee AT, Plump A, DeSimone C, Cerami A, Bucala R (1995) A role for DNA mutations in diabetes-associated teratogenesis in transgenic embryos. Diabetes 44:20–24

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt AM, Stern D (2002) Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 2:430–436

    Article  Google Scholar 

  46. Friedman EA (1982) Diabetic nephropathy: strategies in prevention and management. Kidney Int 21:730–738

    Article  Google Scholar 

  47. Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356–360

    Article  CAS  PubMed  Google Scholar 

  48. Noth RH, Krolewski AS, Kaysen GA, Meyer TW, Schambelan M (1989) Diabetic nephropathy: hemodynamic basis and implications for disease management. Ann Intern Med 110:795–813

    CAS  PubMed  Google Scholar 

  49. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type I (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496–501

    Article  CAS  PubMed  Google Scholar 

  50. McVerry BA, Hopp A, Fisher C, Huehns ER (1980) Production of pseudodiabetic renal glomerular changes in mice after repeated injections of glycosylated proteins. Lancet 5:738–740

    Article  Google Scholar 

  51. Sabbatini M, Sansone G, Uccello F, Giliberti A, Conte G, Andreucci VE (1992) Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int 42:875–881

    Article  CAS  PubMed  Google Scholar 

  52. Cohen MP, Sharma K, Jin Y, Hud E, Wu VY, Tomaszewski J, Ziyadeh FN (1995) Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest 95:2338–2345

    Article  CAS  PubMed  Google Scholar 

  53. Sander B, Larsen M, Engler C, Lund-Andersen H, Parving HH (1994) Early changes in diabetic retinopathy: capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol (Copenh) 72:553–559

    Article  CAS  Google Scholar 

  54. Mamputu JC, Renier G (2002) Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of glicazide. J Diabetes Complications 16:284–293

    Article  PubMed  Google Scholar 

  55. Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222–224

    Article  CAS  PubMed  Google Scholar 

  56. Swamy MS, Abraham A, Abraham EC (1992) Glycation of human lens proteins: preferential glycation of alpha A subunits. Exp Eye Res 54:337–345

    Article  CAS  PubMed  Google Scholar 

  57. Araki N, Ueno N, Chakrabarti B, Morino Y, Horiuchi S (1992) Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem 267:10211–10214

    CAS  PubMed  Google Scholar 

  58. Kyselova Z, Stefek M, Bauer V (2004) Pharmacological prevention of diabetic cataract. J Diabetes Complications 18:129–140

    Article  CAS  PubMed  Google Scholar 

  59. Watkinson S, Seewoodhary R (2008) Ocular complications associated with diabetes mellitus. Nurs Stand 22:51–57

    CAS  PubMed  Google Scholar 

  60. Vinik AI, Park TS, Stansberry KB, Pittenger GL (2004) Diabetic neuropathies. Diabetologia 43:957–973

    Article  Google Scholar 

  61. Thornalley PJ (2002) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57

    Article  CAS  PubMed  Google Scholar 

  62. Williams SK, Howarth NL, Devenny JJ, Bitensky MW (1982) Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci USA 79:6546–6550

    Article  CAS  PubMed  Google Scholar 

  63. Cullum NA, Mahon J, Stringer K, McLean WG (1991) Glycation of rat sciatic nerve tubulin in experimental diabetes mellitus. Diabetologia 34:387–389

    Article  CAS  PubMed  Google Scholar 

  64. Vlassara H, Brownlee M, Cerami A (1983) Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 32:670–674

    Article  CAS  PubMed  Google Scholar 

  65. Vlassara H, Brownlee M, Cerami A (1984) Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts. J Exp Med 160:197–207

    Article  CAS  PubMed  Google Scholar 

  66. Peppa M, Uribarri J, Vlassara H (2004) The role of advanced glycation end products in the development of atherosclerosis. Curr Diab Rep 4:31–36

    Article  PubMed  Google Scholar 

  67. Pyorala K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3:463–524

    Article  CAS  PubMed  Google Scholar 

  68. Glenn JV, Stitt AW (2009) The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta 1790:1109–1116

    CAS  PubMed  Google Scholar 

  69. Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101:527–537

    CAS  PubMed  Google Scholar 

  70. Bunn HF, Gabbay KH, Gallop PM (1978) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27

    Article  CAS  PubMed  Google Scholar 

  71. Gabbay KH (1976) Editorial: Glycosylated hemoglobin and diabetic control. N Eng J Med 295:443–444

    Article  CAS  Google Scholar 

  72. McDonald MJ, Shapiro R, Bleichman M, Solway J, Bunn HF (1978) Glycosylated minor components of human adult hemoglobin. J Biol Chem 253:2327–2332

    CAS  PubMed  Google Scholar 

  73. Ruderman NB, Williamson JR, Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6:2905–2914

    CAS  PubMed  Google Scholar 

  74. Jain SK, McVie R, Duett J, Herbst JJ (1989) Erithrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543

    Article  CAS  PubMed  Google Scholar 

  75. Li YM, Tan AX, Vlassara H (1995) Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat Med 10:1057–1061

    Article  Google Scholar 

  76. Wautier JL, Paton RC, Wautier MP, Pintigny D, Abadie E, Passa P, Caen JP (1981) Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and their relation to the vascular complications. N Engl J Med 305:237–242

    Article  CAS  PubMed  Google Scholar 

  77. Brownlee M, Cerami A (1981) The biochemistry of the complications of diabetes mellitus. Ann Rev Biochem 50:385–432

    Article  CAS  PubMed  Google Scholar 

  78. Mironova R, Niwa T (2001) Molecular heterogeneity of amyloid β2-microglobulin and modification with advanced glycation end products. J Chromatogr B Biomed Sci Appl 758:109–115

    Article  CAS  PubMed  Google Scholar 

  79. Newkirk MM, LePage K, Niwa T, Rubin L (1998) Advanced glycation endproducts (AGE) on IgG, a target for circulating antibodies in North American Indians with rheumatoid arthritis (RA). Cell Mol Biol 44:1129–1138

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez, J.D., Xie, J., Aguilar-Hernández, M. et al. Molecular susceptibility to glycation and its implication in diabetes mellitus and related diseases. Mol Cell Biochem 344, 185–193 (2010). https://doi.org/10.1007/s11010-010-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0541-3

Keywords

Navigation