Skip to main content
Log in

Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

At the neuropathological level, Parkinson’s disease (PD) is characterized by the accumulation of misfolded proteins, which can trigger the unfolded protein response (UPR). UCH-L1 is a component of ubiquitin proteasome system (UPS). It is reported that the loss of its function will impair ubiquitin proteasome system and cause toxicity to cells. But its mechanism has not been illustrated. In this study, we detected the protein expression of Bip/Grp78 and the spliced form of XBP-1 to examine the activation of unfolded protein response after SK-N-SH cells being treated with LDN-57444, a UCH-L1 inhibitor which could inhibit UCH-L1 hydrolase activity. Our data showed that UCH-L1 inhibitor was able to cause cell death through the apoptosis pathway by decreasing the activity of ubiquitin proteasome system and increasing the levels of highly ubiquitinated proteins, both of which can activate unfolded protein response. There is a lot of evidence that unfolded protein response is activated as a protective response at the early stage of the stress; this protective response can switch to a pro-apoptotic response when the stress persists. In this study, we demonstrated this switch by detecting the upregulation of CHOP/Gadd153. Taken together, our data indicated that the apoptosis induced by UCH-L1 inhibitor may be triggered by the activation of endoplasmic reticulum stress (ERS). Moreover, we provide a new cell model for studying the roles of UCH-L1 in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilkinson KD, Lee KM, Deshpande S et al (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673. doi:10.1126/science.2530630

    Article  PubMed  CAS  Google Scholar 

  2. Leroy E, Boyer R, Auburger G et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452. doi:10.1038/26652

    Article  PubMed  CAS  Google Scholar 

  3. Nishikawa K, Li H, Kawamura R et al (2003) Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun 304:176–183. doi:10.1016/S0006-291X(03)00555-2

    Article  PubMed  CAS  Google Scholar 

  4. Hoozemans JJ, van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711. doi:10.1016/j.bbrc.2007.01.043

    Article  PubMed  CAS  Google Scholar 

  5. Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377. doi:10.1074/jbc.M211821200

    Article  PubMed  CAS  Google Scholar 

  6. Ryu EJ, Harding HP, Angelastro JM et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698

    PubMed  CAS  Google Scholar 

  7. Imai Y, Soda M, Inoue H et al (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902. doi:10.1016/S0092-8674(01)00407-X

    Article  PubMed  CAS  Google Scholar 

  8. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462

    Article  PubMed  CAS  Google Scholar 

  9. McNaught KS, Mytilineou C, Jnobaptiste R et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306. doi:10.1046/j.1471-4159.2002.00821.x

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y, Lashuel HA, Choi S et al (2003) Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol 10:837–846. doi:10.1016/j.chembiol.2003.08.010

    Article  PubMed  CAS  Google Scholar 

  11. Gong B, Cao ZX, Zheng P (2006) Ubiquitin hydrolase Uch-l1 rescues β-Amyloid-induced decreases in synaptic function and contextual memory. Cell 126:775–788. doi:10.1016/j.cell.2006.06.046

    Article  PubMed  CAS  Google Scholar 

  12. Fujimuro M, Sawada H, Yokosawa H (1994) Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett 349:173–180. doi:10.1016/0014-5793(94)00647-4

    Article  PubMed  CAS  Google Scholar 

  13. Yoshida H, Haze K, Yanagi H et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749. doi:10.1074/jbc.273.50.33741

    Article  PubMed  CAS  Google Scholar 

  14. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194. doi:10.1196/annals.1299.032

    Article  PubMed  CAS  Google Scholar 

  15. McCullough KD, Martindale JL, Klotz LO et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259. doi:10.1128/MCB.21.4.1249-1259.2001

    Article  PubMed  CAS  Google Scholar 

  16. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459. doi:10.1128/MCB.23.21.7448-7459.2003

    Article  PubMed  CAS  Google Scholar 

  17. Plongthongkum N, Kullawong N, Panyim S et al (2007) Ire1 regulated XBP1 mRNA splicing is essential for the unfolded protein response (unfolded protein response) in Drosophila melanogaster. Biochem Biophys Res Commun 354:789–794. doi:10.1016/j.bbrc.2007.01.056

    Article  PubMed  CAS  Google Scholar 

  18. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891. doi:10.1016/S0092-8674(01)00611-0

    Article  PubMed  CAS  Google Scholar 

  19. Lee K, Tirasophon W, Shen X et al (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466. doi:10.1101/gad.964702

    Article  PubMed  CAS  Google Scholar 

  20. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446. doi:10.1016/S0896-6273(03)00606-8

    Article  PubMed  CAS  Google Scholar 

  21. Akiko Y, Yasuhiro Y, Kiyokazu O et al (2006) Involvement of endoplasmic reticulum stress on cell death induced by 6-OHDA. Neurochem Res 31:657–664. doi:10.1007/s11064-006-9062-6

    Article  Google Scholar 

  22. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28. doi:10.1016/j.tcb.2003.11.001

    Article  PubMed  CAS  Google Scholar 

  23. Pelham HR (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5:1–23. doi:10.1146/annurev.cb.05.110189.000245

    Article  PubMed  CAS  Google Scholar 

  24. Wang XZ, Kuroda M, Sok J et al (1998) Identification of novel stress-induced genes downstream of chop. EMBO J 17:3619–3630. doi:10.1093/emboj/17.13.3619

    Article  PubMed  CAS  Google Scholar 

  25. Bennett MC, Bishop JF, Leng Y et al (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858. doi:10.1074/jbc.274.48.33855

    Article  PubMed  CAS  Google Scholar 

  26. Rideout HJ, Larsen KE, Sulzer D et al (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908. doi:10.1046/j.1471-4159.2001.00474.x

    Article  PubMed  CAS  Google Scholar 

  27. Lee HJ, Suk JE, Bae EJ et al (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol; Epub ahead of print

Download references

Acknowledgments

This work was supported by grants from the National Program of Basic Research (2006CB500706) of China, National Natural Science Fund (30471918, 30570637), Shanghai Key Project of Basic Science Research (04DZ14005) and Program for Outstanding Medical Academic Leader (LJ 06003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Di Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, YY., Zhou, HY., Wang, ZQ. et al. Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor. Mol Cell Biochem 318, 109–115 (2008). https://doi.org/10.1007/s11010-008-9862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9862-x

Keywords

Navigation