Skip to main content

Advertisement

Log in

Exercise-induced stress enhances mammary tumor growth in rats: Beneficial effect of the hormone melatonin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We hypothesized that intense exercise training (forced swimming for 30 min, 5 days/week) may enhance the progression of mammary carcinogenesis through the involvement of stress hormones, such as catecholamines and prolactin, which can promote breast cancer. After the appearance of the DMBA-induced tumors in Sprague-Dawley rats, the effect was evaluated of exercise-induced stress (with or without administration of the hormone melatonin) on the survival time, tumor multiplicity, and tumor growth until the death of the animals. In a second set of experiments, after one month of exercise, the NK cells count in blood, and the plasma concentrations of catecholamines and prolactin were determined. Although no significant change was found in either the survival time of the rats or the tumor multiplicity, exercise significantly increased the tumor growth rate. Stress was confirmed by the enhanced adrenaline and prolactin concentrations in the blood of the exercised rats. Exercise-induced stress did not change the percentage of NK cells in the tumor-bearing rats. Melatonin counteracted the increased tumor growth, returning the prolactin and adrenaline concentrations to their optimal physiological levels in the exercised tumor-bearing rats, thus confirming an “anti-stress” role of this hormone.

In conclusion, intense exercise-induced stress enhances mammary carcinogenesis through the involvement of adrenaline and prolactin. The results also confirmed a role of melatonin as a therapeutic aid against breast cancer in general, and in particular during situations of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman-Goetz L, Husted J: Exercise and breast cancer: review and critical analysis of the literature. Can J Appl Physiol 19: 237–252, 1994

    PubMed  CAS  Google Scholar 

  2. Thompson HJ: Effect of exercise intensity and duration on the induction of mammary carcinogenesis. Cancer Res 54: 1960s–1963s, 1994

    PubMed  CAS  Google Scholar 

  3. Willer A: Reduction of the individual cancer risk by physical exercise. Onkologie 26: 283–289, 2003

    Article  PubMed  CAS  Google Scholar 

  4. Colditz GA, Feskanich D, Chen WY, Hunter DJ, Willett WC: Physical activity and risk of breast cancer in premenopausal women. Brit J Cancer 89: 847–851, 2003

    Article  PubMed  CAS  Google Scholar 

  5. Verloop J, Rookus MA, van der Kooy K, van Leeuwen FE: Physical activity and breast cancer risk in women aged 20–54 years. J Natl Cancer Inst 92: 128–135, 2000

    Article  PubMed  CAS  Google Scholar 

  6. Macneil B, Hoffman-Goetz L: Exercise training and tumor metastasis in mice: influence of time of exercise onset. Anticancer Res 13: 2085–2088, 1993

    PubMed  CAS  Google Scholar 

  7. Thompson HJ: Effects of physical activity and exercise on experimentally-induced mammary carcinogenesis. Breast Cancer Res Treat 46: 135–141, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Westerlind KC, McCarty HL, Schultheiss PC, Story R, Reed AH, Baier ML, Strange R: Moderate exercise training slows mammary tumor growth in adolescent rats. Eur J Cancer Prev 12: 281–287, 2003

    Article  PubMed  CAS  Google Scholar 

  9. Hoffman-Goetz L: Physical activity and cancer prevention: Animal-tumor models. Med Sci Sports Exerc 35: 1828–1833, 2003

    Article  PubMed  Google Scholar 

  10. Cohen LA, Kendall ME, Meschter C, Epstein MA, Reinhandt J, Zang E: Inhibition of rat mammary tumorigenesis by voluntary exercise. In Vivo 7: 151–158, 1993

    Google Scholar 

  11. Clevenger CV, Furtii PA, Llankinson SE, Schuler LA: The role of prolactin in mammary carcinoma. Endocrine Reviews 24: 1–27, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Vonderhaar BK: Prolactin involvement in breast cancer. Endocr Relat Cancer 6: 389–404, 1999

    Article  PubMed  CAS  Google Scholar 

  13. Drell TL, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F: Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat 80: 63–70, 2003

    Article  PubMed  CAS  Google Scholar 

  14. Vazquez SM, Pignataro O, Luthy IA: Alpha2-adrenergic effect on human breast cancer MCF-7 cells. Breast Cancer Res Treat 55: 41–49, 1999

    Article  PubMed  CAS  Google Scholar 

  15. Anisimov VN: The role of pineal gland in breast cancer development. Crit Rev Onclo Hematol 46: 221–234, 2003

    Google Scholar 

  16. Sánchez-Barceló EJ, Cos S, Fernández R, Mediavilla MD: Melatonin and mammary cancer: A short review. Endocr Relat Cancer 10: 153–159, 2003.

    Article  PubMed  Google Scholar 

  17. Reiter RJ: Mechanisms of cancer inhibition by melatonin. J Pineal Res 37: 213–214, 2004

    Article  PubMed  CAS  Google Scholar 

  18. Maestroni GJ, Conti A: The pineal neurohormone melatonin stimulates activated CD4+, Thy-1+ cells to release opioid agonist (s) with immunoenhancing and anti-stress properties. J Neuroimmunol 28: 167–176, 1990

    Article  PubMed  CAS  Google Scholar 

  19. Sáez MC, Barriga C, García JJ, Rodríguez AB, Ortega E: Effect of the preventive-therapeutic administration of melatonin on mammary tumor-bearing animals. Mol Cell Biochem 268: 25–31, 2005

    Article  PubMed  CAS  Google Scholar 

  20. Loscher W, Mevissen M, Haussler B: Seasonal influence on 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats under controlled laboratory conditions. Pharmacol Toxicol 81: 265–270, 1997

    PubMed  CAS  Google Scholar 

  21. Kubatka P, Bojkova B, M cikova-Kalicka K, Mnichova-Chamilova M, Adamekova E, Ahlers I, Ahlersova E, Cermakova M: Effects of tamoxifen and melatonin on mammary gland cancer induced by N-methyl-N-nitrosourea and by 7,12-dimethylbenz(a)anthracene, respectively, in female Sprague-Dawley rats. Folia Biol (Praha). 47: 5–10, 2001

    CAS  Google Scholar 

  22. Ortega E, Collazos ME, Barriga C, De la Fuente M: Effect of physical activity stress on the phagocytic process of peritoneal macrophages from old guinea pigs. Mech Ageing Dev 65: 157–165, 1992

    Article  PubMed  CAS  Google Scholar 

  23. Thompson HJ, Ronan AM, Ritacco KA, Tagliaferro AR, Meeker D: Effect of exercise on the induction of mammary carcinogenesis. Cancer Res 48: 2720–2723, 1988

    PubMed  CAS  Google Scholar 

  24. Aoyama H, Mori N, Mori W: Anti-glucocorticoid effect of melatonin on adult rats. Acta Pathol Jpn 37: 1143–1148, 1987

    PubMed  CAS  Google Scholar 

  25. Pinilla L, Gonzalez LC, Tena-Sempere M, Aguilar E: Interactions between serotoninergic and aminoacidergic pathways in the control of PRL secretion in prepubertal male rats. J Physiol Biochem 57: 237–244, 2001

    Article  PubMed  CAS  Google Scholar 

  26. Russo J, Russo IH: Atlas and histologic classification of tumors of the mammary gland. J Mammary Gland Biol Neoplasia 5: 187–200, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Kendall AR, Mahne-Giangreco M, Carpenter CL, Ganz PA, Bernstein L: Influence of exercise activity on quality of life in long-term breast cancer survivors. Qual Life Res 14: 361–371, 2005

    Article  PubMed  Google Scholar 

  28. Pinto BM, Frierson GM, Rabin C, Trunzo JJ, Marcus BH: Home-based physical activity intervention for breast cancer patients. J Clin Oncol 23: 3577–3587, 2005

    Article  PubMed  Google Scholar 

  29. Lotzerich H, Fehr HG, Appell HJ: Potentiation of cytostatic but not cytolytic activity of murine macrophages after running stress. Int J Sports Med 11: 61–65, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Peters C, Lotzerich H, Niemeir B, Schule K, Uhlenbruck G: Exercise, cancer and the immune response of monocytes. Anticancer Res 15: 175–179, 1995

    PubMed  CAS  Google Scholar 

  31. Galvao DA, Newton RU: Review of exercise intervention studies in cancer patients. J Clin Oncol 23: 899–909, 2005

    Article  PubMed  Google Scholar 

  32. Oliveira SA, Christos PJ: The epidemiology of physical activity and cancer. Ann NY Acad Sci 833: 79–90, 1997

    Article  Google Scholar 

  33. Shamley DR, Barker K, Simonite V, Beardshaw A: Delayed versus immediate exercises following surgery for breast cancer: a systematic review. Breast Cancer Res Treat 90: 263–271, 2005

    Article  PubMed  Google Scholar 

  34. Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN, Gale RP: Stress increase metastatic spread of mammary tumor in rats: evidence for mediation by the immune system. Brain Behav Immun 5: 193–205, 1991

    Article  PubMed  CAS  Google Scholar 

  35. Cheung SY, Yuen MT, Choi HL, Chen HK, Huan Y, Chen S, Chan FL: An expression study of hormone receptors in spontaneously developed, carcinogen-induced and hormone-induced mammary tumors in female Noble rats. Int J Oncol 22: 1383–1395, 2003

    PubMed  CAS  Google Scholar 

  36. Bartsch C, Bartsch H, Buchberger A, Stieglitz A, Effenberger-Klein A, Kruse-Jarres JD, Besenthal I, Rokos H, Mecke D: Serial transplants of DMBA-induced mammary tumors in Fischer rats as a model system for human breast cancer. VI. The role of different forms of tumor-associated stress for the regulation of pineal melatonin secretion. Oncology 56: 169–176, 1999

    Article  PubMed  CAS  Google Scholar 

  37. Shakhar G, Ben-Eliyahu S: In vivo β-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 160: 3251–3258, 1998.

    PubMed  CAS  Google Scholar 

  38. Kishi A, Takamori Y, Ogawa K, Takano S, Tomita S, Tanigawa M, Niman M, Kishida T, Fujita S: Differential expression of granulysin and perforin by NK cells in cancer patients and correlation of impaired granulysin expression with progression of cancer. Cancer Immunol Immunother 50: 604–614, 2002

    Article  PubMed  CAS  Google Scholar 

  39. Nanmark U, Basse P, Johanson BR, Kuppen P, Kjergaard J, Hokland M: Morphological studies of effector cell-microvessel interactions in adoptive immunotherapy in tumor-bearing animals. Nat Immun 15: 78–86, 1996–1997

    Google Scholar 

  40. ThyagaRajan S, Madden KS, Stevens SY, Felten DL: Anti-tumor effect of L-deprenyl is associated with enhanced central and peripheral neurotransmission and immune reactivity in rats with carcinogen-induced mammary tumors. J Neuroimmunol 109: 95–104, 2000

    Article  PubMed  CAS  Google Scholar 

  41. Hoffman-Goetz L, Apter D, Demark-Wahnefried W, Goran MI, McTiernan A, Reichman ME: Possible mechanisms mediating an association between physical activity and breast cancer. Cancer 83: 621–628, 1998

    Article  PubMed  CAS  Google Scholar 

  42. Thompson HJ, Westerlind KC, Snedden J, Briggs S, Singh M: Exercise intensity dependent inhibition of 1-methyl-1-nitrosourea induced mammary carcinogenesis in female F-344 rats. Carcinogenesis 16: 1783–1786, 1995

    Article  PubMed  CAS  Google Scholar 

  43. Gillette CA, Zhu Z, Westerlind KC, Melby CL, Wolfe P, Thompson HJ: Energy availability and mammary carcinogenesis: effect of calorie restriction and exercise. Carcinogenesis 18: 1183–1188, 1997

    Article  PubMed  CAS  Google Scholar 

  44. Sánchez-Barceló EJ, Cos S, Fernández R, Mediavilla MD, Martínez-Campa C, Gonzánlez A, Alonso-González C: Melatonin-estrogen interactions in breast cancer. J Pineal Res 38: 217–222, 2005

    Article  PubMed  CAS  Google Scholar 

  45. Reiter RJ, Tan D, Mayo JC, Sainz RM, Leon J, Czarnocki Z: Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50: 1129–1146, 2003

    PubMed  CAS  Google Scholar 

  46. Kang DH: Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13: 540–549, 2002

    Article  PubMed  Google Scholar 

  47. Thompson HJ: Effect of treadmill exercise intensity on hepatic glutathione content and its relevance to mammary tumorigenesis. J Sports Med Phys Fitness 32: 59–63, 1992

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáez, M.d.C., Barriga, C., García, J.J. et al. Exercise-induced stress enhances mammary tumor growth in rats: Beneficial effect of the hormone melatonin. Mol Cell Biochem 294, 19–24 (2007). https://doi.org/10.1007/s11010-005-9067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9067-5

Keywords

Navigation