Skip to main content
Log in

T-tubule formation in cardiacmyocytes: two possible mechanisms?

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

We have followed the differentiation of transverse (T) tubules and of the associations between sarcoplasmic reticulum (SR) and either the plasmalemma (peripheral couplings) or the T tubules (dyads) in postnatal rat ventricular myocytes using electron microscopy. Dyads and peripheral couplings are collectively called Ca2+ Release Units (CRUs) because they are the sites at which Ca2+ is released from the SR. Profiles of T tubules, caveolae and dyads are mostly at the cell edge in early postnatal days and are found with increased frequency in the cell interior during the first two postnatal weeks. Using ferritin to trace continuity of T tubules lumen with the extracellular space, we find that some of T tubules (between ∼6 and 25%), either singly or within dyads, lack ferritin in their lumen. The percentage of tubules that do not contain ferritin decreases slightly during postnatal differentiation and is not very different at the cells’ edges and interior. We propose that T tubules form as invaginations of the plasmalemma that penetrate inward driven by accrual of membrane lipids and specific proteins. This occurs by a dual mechanism: either by the independent flow of SR and T tubule proteins into the two separate membranes or by the fusion of preformed vesicle tandems into the dyads. Most of the CRUs (∼86%) are constituted by peripheral couplings and ferritin containing dyads, thus constituting CRUs in which Ca2+ release from the SR is initiated by a membrane depolarization. In the remaining CRUs, activation of Ca2+ release must be dependent on some other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brette F, Orchard CH (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192

    Article  PubMed  CAS  Google Scholar 

  • Brette F, Despa S, Bers DM, Orchard CH (2005) Spatiotemporal characteristics of SR Ca2+ uptake and release in detubulated rat ventricular myocytes. J Mol Cell Cardiol 39:804–812

    Article  PubMed  CAS  Google Scholar 

  • Ezerman EB, Ishikawa H (1967) Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. J Cell Biol 35:405–414

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DG, Leeson TS (1983) Postnatal development of sarcolemmal invaginations in right atrial myocardium of rat. Acta Anat 117:289–302

    PubMed  CAS  Google Scholar 

  • Flucher BE (1992) Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol 154:245–260

    Article  PubMed  CAS  Google Scholar 

  • Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160:135–147

    Article  PubMed  CAS  Google Scholar 

  • Forbes MS, Sperelakis N (1976) The presence of transverse and axial tubules in the ventricular myocardium of embryonic and neonatal guinea pigs. Cell Tissue Res 166:83–90

    Article  PubMed  CAS  Google Scholar 

  • Forbes MS, van Neil E (1988) Membrane systems of guinea pig myocardium: ultrastructure and morphometric studies. Anat Record 222:362–379

    Article  CAS  Google Scholar 

  • Forbes MS, Hawkey LA, Sperelakis N (1984) The transverse-axial tubular system (TATS) of mouse myocardium: its morphology in the developing and adult animal. Am J Anat 170:143–162

    Article  PubMed  CAS  Google Scholar 

  • Forbes MS, Hawkey LA, Jirge SK, Sperelakis N (1985) The sarcoplasmic reticulum of mouse heart: its divisions, configurations and distribution. J Ultrastruct Res 93:1–16

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C (1991) Simultaneous maturation of transverse tubules and sarcoplasmatic reticulum during muscle differentiation in the mouse. Dev Biol 146:1–11

    Google Scholar 

  • Gabella G (1978) Inpocketings of the cell membrane (caveolae) in the rat myocardium. J Ultrastruct Res 65:135–147

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1964) Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202:1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H (1968) Formation of elaborate networks of T-system tubules in cultures skeletal muscle with special reference to the T-system formation. J Cell Biol 38:51–66

    Article  PubMed  CAS  Google Scholar 

  • Jewett PH, Leonard SD, Sommer JR (1973) Chicken cardiac muscle. Its extensive extended junctional sarcoplasmic reticulum and sarcoplasmic reticulum fenestrations. J Cell Biol 56:595–600

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen AO, Shen AC, Arnold W, McPherson PS, Campbell KP (1993) The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol 120:969–980

    Article  PubMed  CAS  Google Scholar 

  • Kelly AM (1971) Sarcopalsmic reticulum and t tubules in differentiating rat skeletal muscle. J Cell Biol 49:335–344

    Article  CAS  PubMed  Google Scholar 

  • Leeson TS (1978) The transverse tubular (T) system of cardiac muscle fibers as demonstrated by tannic acid and mordanting. Can J Zool 56:1906–1916

    Article  PubMed  CAS  Google Scholar 

  • Page SG (1965) A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol 26:477–497

    Article  PubMed  CAS  Google Scholar 

  • Page E, Buecker JL (1981) Development of dyadic junctional complexes between sarcoplasmic reticulum and plasmalemma in rabbit left ventricular myocardial cells. Circ Res 48:519–522

    PubMed  CAS  Google Scholar 

  • Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137–154

    Article  PubMed  CAS  Google Scholar 

  • Pérez CG, Copello JA, Li Y, Karko KL, Gómez L, Ramos-Franco J, Fill M, Escobar AL, Mejía-Alvarez R (2005) Ryanodine receptor function in newborn rat heart. Am J Physiol 288:H2527–H2540

    Google Scholar 

  • Protasi F, Sun XH, Franzini-Armstrong C (1996) Formation and maturation of the Ca2+ release apparatus in developing and adult avian myocardium. Dev Biol 173:265–278

    Article  PubMed  CAS  Google Scholar 

  • Scriven DR, Klimek A, Lee KL, Moore ED (2002) The molecular architecture of Ca2+ microdomains in cardiomyocytes. Ann NY Acad Sci 976:488–499

    Article  PubMed  CAS  Google Scholar 

  • Sedarat F, Xu L, Moore ED, Tibbits GF (2000) Colocalization of dihydropyridine and ryanodine receptors in neonate rabbit heart using confocal microscopy. Am J Physiol 279:H202–209

    CAS  Google Scholar 

  • Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T, Namiki A, Tohse N (2003) Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc Res 58:535–548

    Article  PubMed  CAS  Google Scholar 

  • Snopko RM, Ramos-Franco J, Di Maio A, Karko KL, Manley C, Piedras-Rentería E, Mejía-Alvarez R (2007) Ca2+ Sparks and cellular distribution of ryanodine receptors in developing cardiomyocytes from rat. J Mol Cell Cardiol (submitted)

  • Sommer JR, High T, Ingram P, Kopf D, Nassar R, Taylor I (1998) EJSR/JSR: three-dimensional geometry of an ionic charge with fuse. Ann NY Acad Sci 853:361–364

    Article  PubMed  CAS  Google Scholar 

  • Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol 129:659–673

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Shuman H, Franzini-Armstrong C (1993) Differentiation of membrane systems during development of slow and fast skeletal muscle fibres in chicken. J Muscle Res Cell Motil 14:633–645

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H (2002) Intracellular Ca2+ store in embryonic cardiac myocytes. Front Biosci 7:d1642–d1652

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    Article  PubMed  CAS  Google Scholar 

  • Voldstedlund M, Vinten J, Tranum-Jensen J (2001) cav-p60 expression in rat muscle tissues. Distribution of caveolar proteins. Cell Tissue Res 306:265–276

    Article  PubMed  CAS  Google Scholar 

  • Way M, Parton RG (1995) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 378:108–112

    Article  Google Scholar 

  • Woo SH, Cleemann L, Morad M (2005) Diversity of atrial local Ca2+ signalling: evidence from 2-D confocal imaging in Ca2+-buffered rat atrial myocytes. J Physiol 567:905–921

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Arnold W, Jorgensen AO (1990) Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (SL50) in rabbit skeletal muscle developing in situ. J Cell Biol 110:1187–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Nosta Glaser for her technical help during the experiments and Ms. Sara Marconi for her help in photography. This work was supported by NIH grant HL48093 (to C.F.A), HL-62571 (to R.M.A.) and by the American Heart Association grant-in-aid 0655656Z (to R.M.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Di Maio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Maio, A., Karko, K., Snopko, R.M. et al. T-tubule formation in cardiacmyocytes: two possible mechanisms?. J Muscle Res Cell Motil 28, 231–241 (2007). https://doi.org/10.1007/s10974-007-9121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-007-9121-x

Keywords

Navigation