Skip to main content
Log in

Preparation and photophysical properties of monomeric liquid-crystalline azo-dyes embedded in bulk and film SiO2-sonogel glasses

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SiO2-based bulk and film sol–gel hybrid materials were prepared with a family of novel liquid crystalline (LC) amphiphilic azo-dyes bearing oligo(ethylene glycol) spacers (named here RED-PEG-n, n = 2, 3, 4, 6). The catalyst-free-sonogel route was implemented to produce optically active hybrid monoliths and spin-coated films with these materials. Comprehensive morphological, thermal, photo-acoustic and spectroscopic sample characterizations were performed in order to elucidate the physical properties of these novel compounds within the sonogel environment. Film samples were also studied via the nonlinear optical (NLO) second harmonic generation (SHG)-Maker fringes technique. Results show that the chromophores were homogeneously embedded within the highly pure SiO2-sonogel network, showing a clear thermotropic mesogenic behavior. The push–pull structure of the implemented azo-dyes allowed effective electrically-induced monomeric alignment within the sonogel confinement; thus, stable quadratic NLO-SHG-activity in the organic–inorganic film samples was achieved despite the lack of glass transition temperature (T g ) of the guest LC-compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The TEOS/H2O mixture obtained after sonication is a homogeneous opaque suspension containing both the sonochemically reacted and unreacted molecular species from the constituting reactants. Note that despite the fact that the cooling system is always on during sonication, the intermittent US-irradiation sequences of 5 s allow the system to cool down in order to avoid excessive reaction temperatures promoted by intense US-irradiation. These intermittent irradiation sequences also provide adequate silence periods for recombination of the formed molecular species, giving rise to an increase of hydrolyzed Si-based molecular compounds, which form after condensation/polymerization a stable SiO2 glassy network [37].

  2. The slow drying process of the samples performed at room temperature has proven to be efficient in order to produce quality film structures with adequate morphology suitable for optical characterizations as verified by AFM-microscopy. On the other hand, it has also been proven that negligible water residuals remain within the porous sonogel glassy structure [37], which are in any case eliminated as the film samples are heated for Corona-poling processing or are non-active for quadratic NLO-SHG effects.

  3. Note that for the n = 6 compound, the spectral and other experimental data are not reported (see below) since the optical quality of both, bulk and film hybrid samples was not acceptable; i.e., the n = 6 based hybrids exhibit strong light scattering and poor bulk and film quality which also affects the accuracy of the NLO-characterizations at the fundamental and SHG wavelengths.

  4. Thermodynamic phase-transitions only detected on cooling the sample below the melting temperature.

References

  1. Boyd RW (1992) Nonlinear Optics. Academic Press, San Diego, CA

    Google Scholar 

  2. Saleh BEA, Teich MC (1991) Fundamentals of Photonics. Wiley, New York

    Book  Google Scholar 

  3. Messier J (1991) Organic Molecules for Nonlinear Optics and Photonics. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  4. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  5. Rao CNR (ed) (1993) Chemistry of advanced materials. Blachaell Scientific Publications, London

    Google Scholar 

  6. Lindsay GA, Singer KD (Ed) (1995) Polymers for second order nonlinear optics, ACS symposium series no 601, Washington, USA

  7. Tredgold RH (1995) J Mater Chem 5:1095–1106

    Article  CAS  Google Scholar 

  8. Hall RA, Hara M, Knoll W (1996) Langmuir 12:2551–2555

    Article  CAS  Google Scholar 

  9. Lupo D, Ringsdorf H, Schuster A, Seitz M (1994) J Am Chem Soc 116:10498–10506

    Article  CAS  Google Scholar 

  10. Rau H, In Rabek JK (Eds) (1990) Photochemistry and photophysics, vol 2. CRC Press, Boca Raton, p 119

  11. Yesodha SK, Pillai CKS, Tsutsumi N (2004) Progr Polym Sci 29:45–74

    Article  CAS  Google Scholar 

  12. Natansohn A, Rochon P (2002) Chem Rev 102:4139–4175

    Article  CAS  PubMed  Google Scholar 

  13. Kasha M (1963) Rad Res 20:55–70

    Article  CAS  Google Scholar 

  14. Rivera E, Belletête M, Natansohn A, Durocher G (2003) Can J Chem 81:1076–1082

    Article  CAS  Google Scholar 

  15. Rivera E, Carreón-Castro MP, Buendía I, Cedillo G (2006) Dyes Pigments 68:217–226

    Article  CAS  Google Scholar 

  16. Rivera E, Carreón-Castro MP, Rodríguez L, Cedillo G, Fomine S, Morales-Saavedra OG (2007) Dyes Pigments 74:396–403

    Article  CAS  Google Scholar 

  17. He XH, Zhang HL, Yan DL, Wang X (2003) J Polym Sci Polym Chem 41:2854–2864

    Article  CAS  Google Scholar 

  18. Tian YQ, Watanabe K, Kong XX, Abe J, Iyoda T (2003) Macromolecules 36:39–47

    Google Scholar 

  19. Saito M, Shimomura T, Okumura Y, Ito K, Hayakawa R (2001) J Chem Phys 114:1–3

    Article  CAS  ADS  Google Scholar 

  20. Shimomura T, Funaki T, Ito K (2002) J Incl Phenom Macroc Chem 44:275–278

    Article  CAS  Google Scholar 

  21. Zheng PJ, Wang C, Hu X, Tam KC, Li L (2005) Macromolecules 38:2859–2864

    Article  CAS  ADS  Google Scholar 

  22. Hu X, Zheng PJ, Zhao XY, Li L, Tam KC, Gan LH (2004) Polymer 45:6219–6225

    Article  CAS  Google Scholar 

  23. Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y (2004) Chem Lett 33:890–891

    Article  CAS  Google Scholar 

  24. Ikeda T, Ooya T, Yui N (1999) Polym J 31:658–663

    Article  CAS  Google Scholar 

  25. Tung CH, Wu LZ, Zhang LP (2003) Acc Chem Res 36:39–47

    Article  CAS  PubMed  Google Scholar 

  26. Razna J, Hodge P, Kucharski S (1999) J Mater Chem 9:1693–1698

    Article  CAS  Google Scholar 

  27. Wang Y, Wang CS, Wang XJ, Guo Y, Xie B, Cui Z, Liu L, Xu L, Zhang D, Yang B (2005) Chem Mater 17:1265–1268

    Article  CAS  Google Scholar 

  28. Morales-Saavedra OG, Mata-Zamora ME, Rivera E, Bañuelos JG, Saniger JM (2008) J Dyes Pigments 78:48–59

    Article  CAS  Google Scholar 

  29. Rivera E, MdP Carreón-Castro, Salazar R, Huerta G, Becerril C, Rivera L (2007) Polymer 48:3420–3428

    Article  CAS  Google Scholar 

  30. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San Diego

    Google Scholar 

  31. Suslick KS (1990) Science 247:1373–1445

    Article  Google Scholar 

  32. de la Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) J Non-Cryst Solids 121:211–215

    Article  Google Scholar 

  33. Suslick KS, Hammerton DA, Cline RE Jr (1986) J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  34. Noltingk BE, Neppiras EA (1950) Proc Phys Soc B63:674–685

    ADS  Google Scholar 

  35. Morales-Saavedra OG, Rivera E, Flores-Flores JO, Castañeda R, Bañuelos JG, Saniger JM (2007) J Sol–Gel Sci Technol 41:277–289

    Article  CAS  Google Scholar 

  36. Sánchez Vergara ME, Morales-Saavedra OG, Ontiveros-Barrera FG, Torrez-Zúñiga V, Ortega-Martínez R, Ortiz Rebollo A (2009) Mat Sci Eng B 158:98–107

    Article  Google Scholar 

  37. Ocotlán-Flores J, Saniger JM (2006) J Sol–Gel Sci Technol 39:235–240

    Article  Google Scholar 

  38. Giacometti JA, Fedosov SN, Costa MM (1999) Braz J Phy 29:269–280

    CAS  Google Scholar 

  39. Maker PD, Terhune RW, Nisenoff M, Savage CM (1992) Phys Rev Lett 8:21

    Article  ADS  Google Scholar 

  40. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  41. Morales-Saavedra OG, Castañeda R, Ocotlan-Flores J, Román-Moreno C, Ortega-Martínez R, Pelzl G (2008) Mol Cryst Liq Cryst 488:56–73

    Article  CAS  Google Scholar 

  42. Torres-Zúñiga V, Castañeda-Guzmán R, Santiago J, Morales-Saavedra OG, Zepahua-Camacho M (2008) Opt Express 16:20724–20733

    Article  ADS  PubMed  Google Scholar 

  43. Morales-Saavedra OG, Castañeda R, Bañuelos JG, Carreon-Castro MPD (2008) J Nanosci Nanotech 8:3582–3594

    Article  CAS  Google Scholar 

  44. Pérez-Martínez AL, Ogawa T, Aoyama T, Wada T (2009) Opt Mater 31:912–918

    Article  ADS  Google Scholar 

  45. Yamaoka K, Charney E (1972) J Am Chem Soc 94:8963–8974

    Article  CAS  PubMed  Google Scholar 

  46. Ju JJ, Kim J, Do JY, Kim MS, Park SK, Park S, Lee MH (2004) Opt Lett 29:89–91

    Article  CAS  ADS  PubMed  Google Scholar 

  47. Mortazavi MA, Knoesen A, Kowel ST, Higgins BG, Dienes A (1989) J Opt Soc Am B 6:733

    Article  CAS  ADS  Google Scholar 

  48. Morales-Saavedra OG, Castañeda L (2007) Opt Commun 269(2):370–377

    Article  CAS  ADS  Google Scholar 

  49. Morales-Saavedra OG, Ontiveros-Barrera FG, Torres-Zúñiga V, Guadalupe-Bañuelos J, Ortega-Martínez R, Rivera E (2009) Smart Mater Struct 18: art. no. 085024

Download references

Acknowledgments

The authors are grateful to Dr. Neil Bruce for English revision of the manuscript. This work was supported by projects SEP-CONACyT (Grant: U-49846-F) and PAPIIT-DGAPA-UNAM (Grant: IN-115508). O G Morales-Saavedra also acknowledges financial support from the DAAD academic organization (Germany). E. Rivera thanks PAPIIT-DGAPA-UNAM (Grant: IN-105610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Morales-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Zúñiga, V., Morales-Saavedra, O.G., Rivera, E. et al. Preparation and photophysical properties of monomeric liquid-crystalline azo-dyes embedded in bulk and film SiO2-sonogel glasses. J Sol-Gel Sci Technol 56, 7–18 (2010). https://doi.org/10.1007/s10971-010-2265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2265-y

Keywords

Navigation