Skip to main content
Log in

Universality Under Conditions of Self-tuning

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alava, M.J., Laurson, L., Vespignani, A., Zapperi, S.: Comment on “Self-organized criticality and absorbing states: Lessons from the Ising model”. Phys. Rev. E 77, 048101 (2008)

    Article  ADS  Google Scholar 

  2. Andrews, T.: The Bakerian lecture: On the continuity of the gaseous and liquid states of matter. Philos. Trans. R. Soc. 159, 575–590 (1869)

    Article  Google Scholar 

  3. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Christensen, K., Moloney, N., Peters, O., Pruessner, G.: Avalanche behavior in an absorbing state Oslo model. Phys. Rev. E 70, 067101 (2004)

    Article  ADS  Google Scholar 

  5. Dickman, R., Vespignani, A., Zapperi, S.: Self-organized criticality as an absorbing-state phase transition. Phys. Rev. E 57, 5095–5105 (1998)

    Article  ADS  Google Scholar 

  6. Dickman, R., Munoz, M., Vespignani, A., Zapperi, S.: Paths to self-organized criticality. Braz. J. Phys. 30, 27–41 (2000)

    Google Scholar 

  7. Dickman, R., Alava, M., Munoz, M., Peltola, J., Vespignani, A., Zapperi, S.: Critical behavior of a one-dimensional fixed-energy stochastic sandpile. Phys. Rev. E 64, 056104 (2001)

    Article  ADS  Google Scholar 

  8. Fraysse, N., Sornette, A., Sornette, D.: Critical phase-transitions made self-organized—proposed experiments. J. Phys. I 3, 1377–1386 (1993)

    Article  Google Scholar 

  9. Hsiao, P., Monceau, P., Perreau, M.: Magnetic critical behavior of fractals in dimensions between 2 and 3. Phys. Rev. B 62, 13856–13859 (2000)

    Article  ADS  Google Scholar 

  10. Lubeck, S.: Universal scaling behavior of non-equilibrium phase transitions. Int. J. Mod. Phy. B 18, 3977–4118 (2004)

    Article  ADS  Google Scholar 

  11. Manna, S.S.: 2-State model of self-organized criticality. J. Phys. A 24, L363–L369 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  12. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  13. Privman, V., Hohenberg, P.C., Aharony, A.: Universal critical-point amplitude relations. In: Domb, C., Liebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena. Academic Press, San Diego (1991)

    Google Scholar 

  14. Pruessner, G., Peters, O.: Self-organized criticality and absorbing states: Lessons from the Ising model. Phys. Rev. E 73, 025106 (2006)

    Article  ADS  Google Scholar 

  15. Pruessner, G., Peters, O.: Reply to “Comment on ‘Self-organized criticality and absorbing states: Lessons from the Ising model”. Phys. Rev. E 77, 048102 (2008)

    Article  ADS  Google Scholar 

  16. Tank, C., Bak, P.: Mean field theory of self-organized critical phenomena. J. Stat. Phys. 51, 797–802 (1988)

    Article  ADS  Google Scholar 

  17. Williams, J.K.: Monte Carlo estimate of the dynamical critical exponent of the 2D kinetic Ising model. J. Phys. A 18, 49–60 (1985)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, O., Girvan, M. Universality Under Conditions of Self-tuning. J Stat Phys 141, 53–59 (2010). https://doi.org/10.1007/s10955-010-0039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0039-0

Keywords

Navigation