Skip to main content
Log in

A q-analog of Racah polynomials and q-algebra SU q(2) in quantum optics

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study some q-analogs of Racah polynomials and some of their applications in the theory of representation of quantum algebras. Possible implementations in quantum optics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  2. J Guerrero, V. I. Man’ko, G. Marmo, and A. Simoni, “Geometrical aspects of the Lie group representation and their optical applications,” J. Russ. Laser Res., 23, 49–80 (2002).

    Article  Google Scholar 

  3. B. Gruber, Yu. F. Smirnov, and Yu. I. Kharitonov, “Quantum algebra U q(gl(3)) and nonlinear optics,” J. Russ. Laser Res., 24, 56–68 (2003).

    Article  Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  5. R. Askey and R. Wilson, “A set of orthogonal polynomials that generalize Racah coefficients or 6j symbols,” SIAM J. Math. Anal., 10, 1008–1020 (1979).

    Article  MathSciNet  Google Scholar 

  6. R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” Reports of the Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1998), No. 98-17.

    Google Scholar 

  7. R. Askey and R. Wilson, “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials,” Mem. Amer. Math. Soc., Providence, Rhode Island, 319 (1985).

  8. A. F. Nikiforov and V. B. Uvarov, “Classical orthogonal polynomials in a discrete variable on nonuniform lattices,” Preprint No. 17 of the M. V. Keldysh Institute of Applied Mathematics [in Russian], Moscow (1983).

  9. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics, Springer Verlag, Berlin (1991) [Russian Edition, Nauka, Moscow (1985)].

    Google Scholar 

  10. V.G. Drinfel’d, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley 1986), American Mathematical Society, Providence, R. I. (1987), pp. 798–820.

    Google Scholar 

  11. L.D. Faddev and L. A. Takhtajan, Lect. Notes Phys., 246, 183 (1986).

    Google Scholar 

  12. M. Jimbo, “Quantum R matrix for the generalized Toda system,” Commun. Math. Phys., 102, 537–547 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. P. P. Kulish and N. Yu. Reshetikhin, Zapiski Nauchnykh Seminarov LOMI [in Russian], 101 (1981)

  14. E. K. Sklyanin, “Some algebraic structures connected with the Yang-Baxter equation,” Funct. Anal. Appl., 16, 263–270 (1983).

    Article  Google Scholar 

  15. A. N. Kirillov and N. Yu. Reshetikhin, LOMI Preprint E-9-88, Leningrad (1988).

  16. R. Álvarez-Nodarse, “q-Analog of the vibrational IBM and the quantum algebra SU q(1, 1)” [in Russian], Master’s Thesis, M. V. Lomonosov Moscow State University (November 1992).

  17. R. Álvarez-Nodarse and Yu. F. Smirnov, “q-Dual Hahn polynomials on the nonuniform lattice x(s) = [s]q[s + 1]q and the q-algebras SU q(1, 1) and SU q(2),” J. Phys. A: Math. Gen., 29, 1435–1451 (1996).

    Article  ADS  Google Scholar 

  18. A. A. Malashin, “q-Analog of Racah polynomials on the lattice x(s) = [s]q[s+1]q and its connections with 6j-symbols for the SU q(2) and SU q(1, 1) quantum algebras” [in Russian], Master’s Thesis, M. V. Lomonosov Moscow State University (January 1992).

  19. H. Rosengren, “An elementary approach to 6j-symbols (classical, quantum, rational and elliptic),” Los Alamos ArXiv math.CA/0312310 (2003).

  20. Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “Method of projection operators and the q-analog of the quantum theory of angular momentum. Clebsch-Gordan coefficients and irreducible tensor operators,” Sov. J. Nucl. Phys., 53, 593–605 (1991).

    Google Scholar 

  21. Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “The projection-operator method and the q-analog of the quantum theory of angular momentum. Racah coefficients, 3j-and 6j-symbols, and their symmetry properties,” Sov. J. Nucl. Phys., 53, 1069–1086 (1991).

    Google Scholar 

  22. Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “Tree technique and irreducible tensor operators for the SU q(2) quantum algebra. 9j-Symbols,” Sov. J. Nucl. Phys., 55, 1599–1604 (1992).

    Google Scholar 

  23. Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, “The tree technique and irreducible tensor operators for the SU q(2) quantum algebra. The algebra of irreducible tensor operators,” Phys. Atom. Nucl., 56, 690–700 (1993).

    ADS  Google Scholar 

  24. H. T. Koelink, “Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications,” Acta Appl. Math., 44, 295–352 (1996).

    MATH  MathSciNet  Google Scholar 

  25. N. Ja. Vilenkin and A. U. Klimyk, Representations of Lie Groups and Special Functions, Kluwer Academic Publishers, Dordrecht (1992), Vols. II, III.

    Google Scholar 

  26. R. Álvarez-Nodarse, Polinomios Hipergemétricos y q-Polinomios [in Spanish], Monografías del Seminario García Galdeano, Universidad de Zaragoza, Prensas Universitarias de Zaragoza, Zaragoza, Spain (2003), Vol. 26.

    Google Scholar 

  27. N. M. Atakishiyev, M. Rahman, and S. K. Suslov, “On classical orthogonal polynomials,” Constr. Approx., 11, 181–226 (1995).

    Article  MathSciNet  Google Scholar 

  28. A. F. Nikiforov and V. B. Uvarov, “Polynomial solutions of hypergeometric-type difference equations and their classification,” Integral Transform. Spec. Funct., 1, 223–249 (1993).

    MathSciNet  Google Scholar 

  29. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  30. R. Álvarez-Nodarse, “Polinomios generalizados y q-polinomios: propiedades espectrales y aplicaciones” [in Spanish], Tesis Doctoral, Universidad Carlos III de Madrid, Madrid (1996).

    Google Scholar 

  31. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press (1990).

  32. P. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoi, “Weyl q-coefficients for u q(3) and Racah q-coefficients for su q(2),” Sov. J. Nucl. Phys., 58, 1859–1872 (1996).

    MathSciNet  Google Scholar 

  33. A. A. Malashin, Yu. F. Smirnov, and Yu.I. Kharitonov, Sov. J. Nucl. Phys., 53, 1105–1119 (1995).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Manuscript submitted by the authors in English November 25, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Nodarse, R., Smirnov, Y.F. & Costas-Santos, R.S. A q-analog of Racah polynomials and q-algebra SU q(2) in quantum optics. J Russ Laser Res 27, 1–32 (2006). https://doi.org/10.1007/s10946-006-0001-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0001-4

Keywords

Navigation