Skip to main content
Log in

Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The inclusion of steric effects is important when determining the electrostatic potential near a solute surface. We consider a modified form of the Poisson-Boltzmann equation, often called the Poisson-Bikerman equation, in order to model these effects. The modifications lead to bounded ionic concentration profiles and are consistent with the Poisson-Boltzmann equation in the limit of zero-size ions. Moreover, the modified equation fits well into existing finite element frameworks for the Poisson-Boltzmann equation. In this paper, we advocate a wider use of the modified equation and establish well-posedness of the weak problem along with convergence of an associated finite element formulation. We also examine several practical considerations such as conditioning of the linearized form of the nonlinear modified Poisson-Boltzmann equation, implications in numerical evaluation of the modified form, and utility of the modified equation in the context of the classical Poisson-Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, M.E., McCammon, J.A.: Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90(3), 509–521 (1990)

    Article  Google Scholar 

  2. Koehl, P.: Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16(2), 142–151 (2006)

    Article  Google Scholar 

  3. Vizcarra, C.L., Mayo, S.L.: Electrostatics in computational protein design. Curr. Opin. Chem. Biol. 9(6), 622–626 (2005)

    Google Scholar 

  4. Gouy, G.: Sur la constitution de la charge électrique a la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 455–468 (1910)

    Article  Google Scholar 

  5. Chapman, D.L.: A contribution to the theory of electrocapillarity. Philos. Mag. 25, 457–481 (1913)

    Google Scholar 

  6. Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolytes: a modified Poisson-Boltzmann equation. Phys. Rev. Lett. 79(3), 435–438 (1997)

    Article  Google Scholar 

  7. Borukhov, I., Andelman, D., Orland, H.: Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation. Electrochim. Acta 46(2–3), 221–229 (2000)

    Article  Google Scholar 

  8. Khair, A.S., Squires, T.M.: Ion steric effects on electrophoresis of a colloidal particle. J. Fluid Mech. 640, 343–356 (2009)

    Article  MATH  Google Scholar 

  9. Bikerman, J.J.: Structure and capacity of electrical double layer. Philos. Mag. 33(220), 384–397 (1942)

    MATH  Google Scholar 

  10. Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75(2), 021502 (2007)

    Article  Google Scholar 

  11. Storey, B.D., Edwards, L.R., Kilic, M.S., Bazant, M.Z.: Steric effects on ac electro-osmosis in dilute electrolytes. Phys. Rev. E 77(3), 036317 (2008)

    Article  Google Scholar 

  12. Levine, S., Bell, G.M.: Theory of a modified Poisson-Boltzmann equation. I. The volume effect of hydrated ions. J. Phys. Chem. 64(9), 1188–1195 (1960)

    Article  MathSciNet  Google Scholar 

  13. Outhwaite, C.W., Bhuiyan, L., Levine, S.: Theory of the electric double layer using a modified Poisson-Boltzmann equation. J. Chem. Soc. Faraday Trans. 2, Mol. Chem. Phys. 76, 1388–1408 (1980)

    Article  Google Scholar 

  14. Tang, Z., Scriven, L.E., Davis, H.T.: A three-component model of the electrical double layer. J. Chem. Phys. 97(1), 494–503 (1992)

    Article  Google Scholar 

  15. Chen, L., Holst, M.J., Xu, J.: The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal. 45(6), 2298–2320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Orttung, W.H.: Direct solution of the Poisson equation for biomolecules of arbitrary shape, polarizability density, and charge distribution. Ann. N.Y. Acad. Sci. 303, 22–37 (1977)

    Article  Google Scholar 

  17. Cortis, C.M., Friesner, R.A.: Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J. Comput. Chem. 18, 1591–1608 (1997)

    Article  Google Scholar 

  18. Holst, M.J., Baker, N.A., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I: algorithms and examples. J. Comput. Chem. 21, 1319–1342 (2000)

    Article  Google Scholar 

  19. Baker, N.A., Holst, M.J., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem. 21, 1343–1352 (2000)

    Article  Google Scholar 

  20. Shestakov, A.I., Milovich, J.L., Noy, A.: Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method. J. Colloid Interface Sci. 247(1), 62–79 (2002)

    Article  Google Scholar 

  21. Xie, D., Zhou, S.: A new minimization protocol for solving nonlinear Poisson-Boltzmann mortar finite element equation. BIT 47(4), 853–871 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wenbin, C., Yifan, S., Qing, X.: A mortar finite element approximation for the linear Poisson-Boltzmann equation. Appl. Math. Comput. 164(1), 11–23 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bond, S.D., Chaudhry, J.H., Cyr, E.C., Olson, L.N.: A first-order system least-squares finite element method for the Poisson-Boltzmann equation. J. Comput. Chem. 31(8), 1625–1635 (2010)

    Google Scholar 

  24. Zhou, Z., Payne, P., Vasquez, M., Kuhn, N., Levitt, M.: Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J. Comput. Chem. 17(11), 1344–1351 (1996)

    Article  Google Scholar 

  25. Li, B.: Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40(6), 2536–2566 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, New York (2002)

    Google Scholar 

  27. Yu, S., Geng, W., Wei, G.W.: Treatment of geometric singularities in implicit solvent models. J. Chem. Phys. 126(24), 244108 (2007)

    Article  Google Scholar 

  28. Fogolari, F., Zuccato, P., Esposito, G., Viglino, P.: Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys. J. 76(1), 1–16 (1999)

    Article  Google Scholar 

  29. Kurdila, M.Z.A.: Convex Functional Analysis, Systems & Control: Foundations & Applications. Birkhäuser, Basel (2005)

    Google Scholar 

  30. Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM Series on Optimization, vol. 6. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  31. Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J. Mol. Graph. Model. 26(8), 1370–1380 (2008)

    Article  Google Scholar 

  32. Atkinson, K.E., Han, W.: Theoretical numerical analysis: a functional analysis framework, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  33. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  34. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  35. Born, M.: Volumen und hydratationswärme der ionen. Z. Phys. 1, 45–48 (1920)

    Article  Google Scholar 

  36. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1–4), 139–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001)

    Article  Google Scholar 

  38. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, vol. 45. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehanzeb Hameed Chaudhry.

Additional information

Research of J.H. Chaudhry was supported by the University of Illinois Computational Science and Engineering Fellowship Program. Research of S.D. Bond was supported in part by NSF-CCF 08-30578. Research of L.N. Olson was supported in part by NSF-DMS 07-46676.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhry, J.H., Bond, S.D. & Olson, L.N. Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation. J Sci Comput 47, 347–364 (2011). https://doi.org/10.1007/s10915-010-9441-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9441-7

Keywords

Navigation