Skip to main content
Log in

The Use of Poly(Sodium N-Undecanoyl-l-Leucylvalinate), Poly(Sodium N-Undecanoyl-l-Leucinate) and Poly(Sodium N-Undecanoyl-l-Valinate) Surfactants as Chiral Selectors for Determination of Enantiomeric Composition of Samples by Multivariate Regression Modeling of Fluorescence Spectral Data

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady-state fluorescence spectroscopy was employed to investigate the use of chiral polymeric surfactants as chiral selectors in chiral analysis by multivariate regression modeling of spectral data. Partial-least-squares regression modeling (PLS-1) was used to correlate changes in the fluorescence spectral data of 1,1′-bi-2-naphthol (BOH), 1,1′-binaphthyl-2,2′-diamine (BNA), or 2,2,2-trifluoroanthrylethanol (TFA) in the presence of poly(sodium N-undecanoyl-l-leucylvalinate), poly(sodium N-undecanoyl-l-leucinate) or poly(sodium N-undecanoyl-l-valinate) as the enantiomeric composition of the chiral analytes was varied. The regression models produced from the spectral data were validated by determining the enantiomeric composition of independently prepared test solutions. The ability of the model to correctly predict the enantiomeric composition of future samples was evaluated using the root-mean-square percent-relative error (RMS%RE) of prediction. In terms of RMS%RE, the ability of the model to accurately predict the enantiomeric composition of future samples was dependent on the chiral analyte, the polymeric surfactant used, and the surfactant medium, and ranged between 1.57 and 6.10%. Chiral analyte concentrations as low as 5×10−6 M were found to give regression models with good predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Buxton SR, Roberts SM (1996) Organic stereochemistry. Longman, Singapore

  2. Jamali F, Mehvar R, Pasutto FM (1989) Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 78(9):695–715

    PubMed  CAS  Google Scholar 

  3. Caldwell J (1996) Importance of stereospecific bioanalytical monitoring in drug development. J Chromatogr A 719(1):3–13

    Article  PubMed  CAS  Google Scholar 

  4. Schreier P, Bernreuther A, Huffer M (1995) Analysis of chiral organic molecules. Walter de Gruyter, New York

    Google Scholar 

  5. Aboul-Enein HY, Ali I (2003) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, New York

    Google Scholar 

  6. Zief M, Crane LJ (1988) Chromatographic chiral separations. Marcel Dekker, New York

    Google Scholar 

  7. Subramanian G (2001) Chiral separation techniques: A practical approach. Wiley-VCH, Weinheim

    Google Scholar 

  8. Schmid MG, Laffranchini M, Gubitz G (1999) Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis. Electrophoresis 20(12):2458–2461

    Article  PubMed  CAS  Google Scholar 

  9. Liu X, Ilankumaran P, Guzei IA, Verkade JG (2000) P[(S,S,S)-PhHMeCNCH2CH2]3N: A new chiral 31P and 1H NMR spectroscopic reagent for the direct determination of ee values of chiral azides. J Org Chem 65(3):701–706

    Article  CAS  Google Scholar 

  10. Szejili J, Osa T (eds) (1996) Supramolecular chemistry—cylcodextrins, vol. 3. Pergamon, Oxford

  11. Easton CJ, Lincoln SF (1999) Modified cyclodextrins. Imperial College Press, London

    Google Scholar 

  12. Wang J, Warner IM (1995) Combined polymerized chiral micelle and γ-cyclodextrin for chiral separation in capillary electrophoresis. J Chromatogr A 711(2):297–304

    Article  PubMed  CAS  Google Scholar 

  13. Maichel B, Potocek B, Gas B, Chiari M, Kenndler E (1998) Separation of neutral compounds by capillary electrokinetic chromatography using polyethyleneimine as replaceable cationic pseudostationary phase. Electophoresis 19(12):2124–2128

    Article  CAS  Google Scholar 

  14. Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807(1):37–56

    Article  PubMed  CAS  Google Scholar 

  15. Pascoe RJ, Peterson AG, Foley JP (2000) Investigation of the chiral surfactant N-dodecoxycarbonylvaline in electrokinetic chromatography: improvements in elution range and pH stability via mixed micelles and vesicles, and the hydrophobicity determination of basic pharmaceutical drugs. Electrophoresis 21(15):2033–2042

    Article  PubMed  CAS  Google Scholar 

  16. Hyun MH, Jin JS, Lee W (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J Chromatogr A 822(1):155–161

    Article  Google Scholar 

  17. Finn MG (2002) Emerging methods for the rapid determination of enantiomeric excess. Chirality 14(7):534–540

    Article  PubMed  CAS  Google Scholar 

  18. Lightner DA, Gurst JE (2000) Organic conformation analysis and stereochemistry from circular dichroism spectroscopy. Wiley-CVH, New York

    Google Scholar 

  19. Fakayode SO, Busch MA, Bellert DJ, Busch KW (2005) Determination of the enantiomeric composition of phenylalanine samples by chemometric analysis of the fluorescence spectra of cyclodextrin guest-host complexes. Analyst 130(2):233–241

    Article  PubMed  CAS  Google Scholar 

  20. Fakayode SO, Busch MA, Busch KW (2006) Determination of enantiomeric composition of samples by multivariate regression modeling of spectral data obtained with cyclodextrin guest–host complexes—effect of an achiral surfactant and use of mixed cyclodextrins. Talanta 68(5):1574–1583

    Article  CAS  Google Scholar 

  21. Fakayode SO, Swamidoss IM, Busch MA, Busch KW (2005) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest-host complexes formed with modified cyclodextrins. Talanta 65(4):838–845

    Article  CAS  Google Scholar 

  22. Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2004) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of cyclodextrin guest-host complexes. Anal Chim Acta 525(1):53–62

    Article  CAS  Google Scholar 

  23. Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2003) Determination of the enantiomeric composition of guest molecules by chemometric analysis of the uv-visible spectra of cyclodextrin guest-host complexes. J Am Chem Soc 125(7): 1690–1691

    Article  PubMed  CAS  Google Scholar 

  24. Tran CD, Grishko VI, Oliveira D (2003) Determination of enantiomeric compositions of amino acids by near-infrared spectrometry through complexation with carbohydrate. Anal Chem 75(23):6455–6462

    Article  PubMed  CAS  Google Scholar 

  25. Tran CD, Oliveira D, Grishko VI (2004) Determination of enantiomeric compositions of pharmaceutical products by near-infrared spectrometry. Anal Biochem 325(2):206–214

    Article  PubMed  CAS  Google Scholar 

  26. Edward SH, Shamsi SA (2000) Micellar electrokinetic chromatography of polychlorinated biphenyl congeners using a polymeric surfactant as the pseudostationary phase. J Chromatogr A 903(1/2):227–236

    Article  Google Scholar 

  27. Wang J, Warner IM (1995) Combined polymerized chiral micelle and γ-cyclodextrin for chiral separation in capillary electrophoresis. J Chromatogr A 711(2):297–304

    Article  PubMed  CAS  Google Scholar 

  28. Agnew-Heard KA, Pena MS, Shamsi SA, Warner IM (1997) Studies of polymerized sodium N-undecylenyl-L-valinate in chiral micellar electrokinetic capillary chromatography of neutral, acidic, and basic compounds. Anal Chem 69(5):958–964

    Article  PubMed  CAS  Google Scholar 

  29. Yarabe HH, Shamsi SA, Warner IM (1999) Characterization and thermodynamic studies of the interactions of two chiral polymeric surfactants with model substances: phenylthiohydantoin amino acids. Anal Chem 71(18):3992–3999

    Article  PubMed  CAS  Google Scholar 

  30. Shamsi SA, Warner IM (1997) Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis 18(6):853–872

    Article  PubMed  CAS  Google Scholar 

  31. Billiot HF, Billiot EJ, Warner IM (2001) Comparison of monomeric and polymeric amino acid based surfactants for chiral separations. J Chromatogr A 922(1&2):329–338

    Article  PubMed  CAS  Google Scholar 

  32. Shamsi SA, Valle BC, Billiot F, Warner IM (2003) Polysodium N-undecanoyl- L-leucylvalinate: A versatile chiral selector for micellar electrokineticchromatography. Anal Chem 75(3):379–387

    Article  PubMed  CAS  Google Scholar 

  33. McCarroll ME, Billiot FH, Warner IM (2001) Fluorescence anisotropy as a measure of chiral recognition. J Am Chem Soc 123(13), 3173–3174

    Article  PubMed  CAS  Google Scholar 

  34. Malinowski ER (1991) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  35. Adams MJ (1995) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  36. Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  37. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics a practical guide. Wiley, New York

    Google Scholar 

  38. Agnew-Heard KA, Shamsi SA, Warner IM (2000) Optimizing enantioseparation of phynylthiohydantoin amino acids with polymerized sodium n-undecanolyl-l-valinate in chiral electrokinetic. J Liq Chrom Rel Technol 23(9):1301–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. M. Warner acknowledges the National Institutes of Health, the National Science Foundation, and the Philip W. West Endowment for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isiah M. Warner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakayode, S.O., Williams, A.A., Busch, M.A. et al. The Use of Poly(Sodium N-Undecanoyl-l-Leucylvalinate), Poly(Sodium N-Undecanoyl-l-Leucinate) and Poly(Sodium N-Undecanoyl-l-Valinate) Surfactants as Chiral Selectors for Determination of Enantiomeric Composition of Samples by Multivariate Regression Modeling of Fluorescence Spectral Data. J Fluoresc 16, 659–670 (2006). https://doi.org/10.1007/s10895-006-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0104-x

Keywords

Navigation