Skip to main content
Log in

Generating and Adding Flows on Locally Complete Metric Spaces

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

As a generalization of a vector field on a manifold, the notion of an arc field on a locally complete metric space was introduced in Bleecker and Calcaterra (J Math Anal Appl, 248: 645–677, 2000). In that paper, the authors proved an analogue of the Cauchy–Lipschitz Theorem, i.e they showed the existence and uniqueness of solution curves for a time independent arc field. In this paper, we extend the result to the time dependent case, namely we show the existence and uniqueness of solution curves for a time dependent arc field. We also introduce the notion of the sum of two time dependent arc fields and show existence and uniqueness of solution curves for this sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, second ed. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2008)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. arXiv 1106.2090 (2011)

  3. Aubin, J.P.: Mutational and Morphological Analysis. Birkhauser, Boston (1990)

    Google Scholar 

  4. Bird, R.B., Curtiss, C., Amstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, Kinetic Theory, Vol. 2. Wiley, New York (1987)

    Google Scholar 

  5. Bleecker, D., Calcaterra, C.: Generating flows on metric spaces. J. Math. Anal. Appl. 248, 645–677 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colombo, R.M., Guerra, G.: Differential equations in metric spaces with applications. Discr. Contin. Dyn. Syst. 23(3), 733–753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, P.: Nonlinear Fokker–Planck Navier–Stokes systems. Commun. Math. Sci. 3(4), 531–544 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, P., Masmoudi, N.: Global well-posedness for a Smoluchowski equation coupled with Navier–Stokes equations in 2D. Comm. Math. Phys. 278(1), 179–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Zlatos, A.: On the high intensity limit of interacting corpora. Commun. Math. Sci. 8(1), 173–186 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Plank equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, H.K., Masmoudi, N.: Existence for the Navier–Stokes system coupled with Fokker–Planck flows on metric spaces (2012, in press)

  12. Masmoudi, N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. (2012, in press)

  13. Najman, L.: Euler method for mutational equationse. J. Math. Anal. Appl. 196, 814–822 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ohta, S.I.: Gradient flows on Wasserstein space over compact Alexandrov spaces. Am. J. Math. 131(2), 475–516 (2009)

    Article  MATH  Google Scholar 

  15. Panasyuk, A.I.: Quasidifferential equations in metric spaces (Russian) Differentsial’nye Uravneniya, 21, 1344–1353, 1985. English translation: Differ. Equ. 21, 914–921 (1985)

    Google Scholar 

  16. Panasyuk, A.I.: Quasidifferential equations in a complete metric space under conditions of the caratheodory type I. Differ. Equ. 31, 901–910 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Penot, J.P.: Infinitesimal calculus in metric spaces. J. Geom. Phys. 57(12), 2455–2465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Savaré, G.: Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris. 345, 151–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Villani, C.: Optimal transport: old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer, Berlin (2009)

Download references

Acknowledgments

N. M was partially supported by an NSF Grant DMS-1211806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Kil Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.K., Masmoudi, N. Generating and Adding Flows on Locally Complete Metric Spaces. J Dyn Diff Equat 25, 231–256 (2013). https://doi.org/10.1007/s10884-012-9280-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9280-3

Keywords

Navigation