Skip to main content
Log in

Biological-Activity Predictions and Hydrogen-Bonding Analysis of Estrane Derivatives of Steroids

  • Review Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A total of twenty molecules of estrane derivatives of steroids have been included to predict their pharmacological effects, specific mechanisms of action, known toxicities, drug likeness, etc., by using the statistics of multilevel neighbourhoods of atoms (MNA) descriptors for active and inactive fragments. The biological activity spectra for substances have been correlated on Structure–activity relationships base (SAR data and knowledge base) which provides the different Pa (possibility of activity) and Pi (possibility of inactivity). Most of the probable activities are characterized by Pa and Pi values which depict that all the molecules have high value of teratogen activity. The Lipinski’s thumb rule predicts that all the estrane derivatives have stronger preponderance for “cancer-like-drug” molecules and some of their related analogous have been entered in the ANCI (American National Cancer Institute) database. D-θ and d-θ scatter plots for X–H···A intermolecular interactions are presented for better understanding of packing interactions which exist in estrane derivatives. Comparison of contacts from H(C) to O and H(O) to O, vis-à-vis their crystal structure reveals that contacts from H(O) to O predominate over H(C) to O. Few bifurcated hydrogen bonds based on O–H···O pattern have been observed while trifurcated O–H···O hydrogen bond has been observed only in one molecule (i.e. XVII). Solvent–solute/solute–solvent interactions have also been investigated to understand more complicated processes that occur for biomolecules in aqueous solutions. Most of the molecules have high probability of drug-likeness whereas molecule XIX (71.0%) and XX (86.4%) has low value of drug-likeness instead of observed range of 90.4–99.2%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 4

    Google Scholar 

  2. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 90

    Google Scholar 

  3. Briggs MJ, Brothern J (1970) Steroid biochemistry and pharmacology. Academic Press London, New York, p 89

    Google Scholar 

  4. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 91

    Google Scholar 

  5. Rajnikant, Dinesh, Anshu S, Mousmi, Gupta BD (2004) J Chem Crystallogr 34(8):523

    Article  Google Scholar 

  6. Rajnikant, Dinesh, Chand B (2006) Acta Crystallogr A62:136

    CAS  Google Scholar 

  7. Rajnikant, Dinesh, Bhavnaish (2007) Indian J Biophysics Biochem (Accepted)

  8. Rajnikant, Dinesh, Bhavnaish (2007) Z Kristallographie (Accepted)

  9. Hanson JC, Nordman CE (1975) Acta Cryst B31:493

    CAS  Google Scholar 

  10. Kruger GJ, Coetzer J (1976) Acta Cryst B32:2587

    CAS  Google Scholar 

  11. Rohrer DC, Duax WL, Segaloff A (1978) Acta Cryst B34:2915

    CAS  Google Scholar 

  12. Kuantee J, Kartha G, Neeman M (1982) Acta Cryst B38:3142

    Google Scholar 

  13. Hylarides MD, Duesler EN, Mettler FA, Leon AA (1988) Acta Cryst C44:709

    CAS  Google Scholar 

  14. Duax WL, Griffin JF, Strong PD, Miller B, Kirk DN (1991) Acta Cryst C47:689

    CAS  Google Scholar 

  15. Smales CM, Blackwell LF, Waters JM, Burell AK (1997) Acta Cryst C53:1082

    CAS  Google Scholar 

  16. Kuhl A, Kornath A, Preut H, Kreisner W (1998) Acta Cryst C54:1115

    CAS  Google Scholar 

  17. Stankovic S, Lazar D, Pejanovic V, Petrovic J, Courseille C (1998) Acta Cryst C54:1158

    CAS  Google Scholar 

  18. Bull JR, De Koning PD (1998) Acta Cryst C54:1281

    CAS  Google Scholar 

  19. Bes MT, Wolfing J, Uson I, Pelikan SL, Tietze F, Frank E, Cchneider G (1998) Acta Cryst C54:1115

    Google Scholar 

  20. Sawicki MW, Li N, Ghosh D (1999) Acta Cryst C55:425

    CAS  Google Scholar 

  21. Lazar D, Stankovic S, Pejanovic V, Courseille C (2002) Acta Cryst C58:o63

    CAS  Google Scholar 

  22. Stankovic S, Lazar D, Medic-Mijacevic L, Penov-Gasi K, Sakac M, Andric S, Milenko B (2002) Acta Cryst C58:o172

    CAS  Google Scholar 

  23. Parrish DA, Pinkerton A (2003) Acta Cryst C59:o80

    CAS  Google Scholar 

  24. Starova GL, Egorov MS, Vasiljeva ES, Shavva AG (2003) Acta Cryst C59:o451

    CAS  Google Scholar 

  25. Yamamoto C, Matsumoto T, Watanabe M, Hitzer EMS, Mataka S, Thiemann T (2004) Acta Cryst C60:o130

    CAS  Google Scholar 

  26. Matsumoto T, Watanabe M, Matsumoto T, Mataka S, Thiemann T (2004) Acta Cryst C60:o813

    CAS  Google Scholar 

  27. Filimonov DA, Poroikov VV, Borodina Y, Gloriozova T (1999) J Chem Inf Comput Sci 39:666

    Article  CAS  Google Scholar 

  28. Poroikov VV, Filimonov DA (2001) Computer-assisted predictions of biological activity in search for and optimization of new drugs. Iridium Press, Moscow, p 149

    Google Scholar 

  29. Suchkov AP, Filimonov DA, Stepanchikova AV, Poroikov VV (2001) Environ Res 12(4):327

    Google Scholar 

  30. Anzali S, Barnickel G, Cezanne B, Krug M (2001) J Med Chem 44:2432

    Article  CAS  Google Scholar 

  31. Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) J Chem Inf Comput Sci 43:228

    Article  CAS  Google Scholar 

  32. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 23:3

    Article  CAS  Google Scholar 

  33. Taylor R, Kennard O (1982) J Am Chem Soc 104:5063

    Article  CAS  Google Scholar 

  34. Steiner T, Saegner W (1992) Acta Cryst B48:818

    Google Scholar 

  35. Steiner T, Saegner W (1992) J Am Chem Soc 114:10146

    Article  CAS  Google Scholar 

  36. Steiner T (1996) Cryst Rev 6:1

    Article  CAS  Google Scholar 

  37. Jefferey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, p 400

    Google Scholar 

  38. Steiner T (1998) Acta Cryst B54:456

    CAS  Google Scholar 

  39. Desiraju GR, Steiner T (1999a) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New York

    Google Scholar 

  40. Steiner T (2002) Angew Chem, Int Ed Eng 41:48

    Article  CAS  Google Scholar 

  41. Olovsson I, Jonsson PG (1976) The hydrogen bond. Recent developments in theory & experiment, vol 2. North Holland, Amsterdon, p 393

  42. Preibner R, Egner U, Saenger W (1991) FEBS Lett 288:192

    Article  Google Scholar 

  43. Jeffery GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Google Scholar 

  44. Kollman P (1993) Chem Rev 93:2395

    Article  CAS  Google Scholar 

  45. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    Article  CAS  Google Scholar 

  46. Baldridge KK, Jonas V, Bain AD (2000) Chem Phys 113(17):7519

    Article  CAS  Google Scholar 

  47. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  48. Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874

    Article  CAS  Google Scholar 

  49. Canuto S, Coutinho K, Trzesniak D (2002) Adv Quantum Chem 41:161

    Article  CAS  Google Scholar 

  50. Desiraju GR, Steiner T (1999b) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New York, p 116

    Google Scholar 

  51. Jedlovszky P, Turi L (1997) J Phys Chem B101:5429

    Google Scholar 

  52. Tezuka T, Nakagawa M, Yokoi K, Nagawa Y, Yamagaki YT, Nakanishi H (1997) Tetrahedron Lett 38:4223

    Article  CAS  Google Scholar 

  53. Davidson MG, Lamb S (1997) Polyhedron 16:4393

    Article  CAS  Google Scholar 

  54. Rivelino R, Canuto S, Coutinho K (2004) Braz J Phys 34(1):84

    Article  CAS  Google Scholar 

  55. Williams SP, Sigler PB (1998) Nature (London) 393:392

    Article  CAS  Google Scholar 

  56. Klebe G, Mietzner T, Weber F (1999) Comput-Aided Mol Des 13:35

    Article  CAS  Google Scholar 

  57. Chen JM, Xu XL, Wawrzak Z, Basarab GS, Jordan DB (1998) Biochemistry 37:17735

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author (Rajnikant) is grateful to Science and Engineering Research Council of the Department of Science and Technology, Govt. of India for funding under a sponsored Research project (No. SR/S2/CMP-47/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verma Rajnikant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajnikant, V., Dinesh, J. & Bhavnaish, C. Biological-Activity Predictions and Hydrogen-Bonding Analysis of Estrane Derivatives of Steroids. J Chem Crystallogr 38, 567–576 (2008). https://doi.org/10.1007/s10870-008-9338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-008-9338-6

Keywords

Navigation