Skip to main content
Log in

Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) J Biol Chem 279:49883–49888

    Article  CAS  Google Scholar 

  • Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C (2001) Exp Gerontol 36:21–28

    Article  CAS  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Yeast 14:115–132

    Article  CAS  Google Scholar 

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero II, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wesolowski-Louvel M, Zeeman AM (2000) Enzyme Microb Technol 26:771–780

    Article  CAS  Google Scholar 

  • De Deken RH (1966) J Gen Microbiol 44:149–156

    Google Scholar 

  • Fabrizio P, Longo VD (2003) Aging Cell 2:73–81

    Article  CAS  Google Scholar 

  • Faye G, Kujawa C, Fukuhara H (1974) J Mol Biol 88:185–203

    Article  CAS  Google Scholar 

  • Ferranti R, da Silva MM, Kowaltowski AJ (2003) FEBS Lett 536:51–55

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) FASEB J 14:2135–2137

    CAS  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005) PLoS Genet 1:e69

    Article  CAS  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Science 309:1829–1833

    Article  CAS  Google Scholar 

  • Lambert AJ, Merry BJ (2004) Am J Physiol Regul Integr Comp Physiol 286:R71–R79

    CAS  Google Scholar 

  • Lin SJ, Guarente L (2003) Curr Opin Cell Biol 15:241–246

    Article  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Science 289:2126–2128

    Article  CAS  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Nature 418:344–348

    Article  CAS  Google Scholar 

  • Partridge L, Gems D (2002) Nature Rev Genet 3:165–175

    Article  CAS  Google Scholar 

  • Rodríguez C, Gancedo JM (1999) Mol Cell Biol Res Commun 1:52–58

    Article  Google Scholar 

  • Sinclair D, Mills K, Guarente L (1998) Ann Rev Microbiol 52:533–560

    Article  CAS  Google Scholar 

  • Smith DL, McClure JM, Matecic M, Smith JS (2007) Aging Cell 6:649–662

    Article  CAS  Google Scholar 

  • Tahara EB, Barros MH, Oliveira GA, Netto LE, Kowaltowski AJ (2007) FASEB J 21:274–283

    Article  CAS  Google Scholar 

  • Tzagoloff A, Akai A, Needleman RB (1975) J Biol Chem 250:8228–8235

    CAS  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield, IL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Kowaltowski.

Additional information

G. A. Oliveira and E. B. Tahara contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, G.A., Tahara, E.B., Gombert, A.K. et al. Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J Bioenerg Biomembr 40, 381–388 (2008). https://doi.org/10.1007/s10863-008-9159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9159-5

Keywords

Navigation