Skip to main content
Log in

A Possible Site of Superoxide Generation in the Complex I Segment of Rat Heart Mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We searched for possible sites of superoxide generation in the complex I segment of the respiratory chain by studying both forward and reverse electron transfer reactions in isolated rat heart mitochondria. Superoxide production was monitored by measuring the release of hydrogen peroxide from mitochondria with a fluorescence spectrophotometer using the Amplex red/horseradish peroxidase system. In the forward electron transfer, a slow superoxide production in the presence of glutamate and malate was enhanced by both rotenone and piericidin A (specific inhibitors at the end of the complex I respiratory chain). Both diphenileneiodonium and ethoxyformic anhydride (inhibitors for respiratory components located upstream of the respiratory chain) inhibited the enhancement by rotenone and piericidin A.

In contrast, in reverse electron transfer driven by ATP, both diphenileneiodonium and ethoxyformic anhydride enhanced the superoxide production. Piericidin A also increased superoxide production. Rotenone increased it only in the presence of piericidin A. Our results suggest that the major site of superoxide generation is not flavin, but protein-associated ubisemiquinones which are spin-coupled with iron-sulfer cluster N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DBQ:

decylubiquinone(2,3-dimethoxy-5-methyl-6-decylbenzoquinone)

diS-C3-(5):

3,3′-dipropyl-2, 2′-thiodicarbocyanine iodide

DMSO:

dimethyl sulfoxide

DPI:

diphenileneiodonium

DTT:

ditheiothreitol

EDTA:

ethylenediaminetetraacetic acid

EFA:

ethoxyformic anhydride (also known as diethyl pyrocarbonate)

EGTA:

ethylene glycol bis(β-aminoethyl ether)

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

Q:

ubiquinone

QH2:

reduced ubiquinone

Qi and Qo sites:

two ubiquinone binding sites in the complex III segment of the respiratory chain

ROS:

reactive oxygen species

SOD:

superoxide dismutase

SQ:

ubisemiquinone

References

  • Barja, G., and Herrero, A. (1998). Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondra in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Barrientos, A., and Moraes, C. T. (1999). Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274, 16188–16197.

    Article  CAS  PubMed  Google Scholar 

  • Beal, M. F., and Bodies-Wollner, I. (1997). Mitochondria and Free Radicals in Neurogegenerative Disease. Wiley-Liss, New York.

    Google Scholar 

  • Belogrudov, G., and Hatefi, Y. (1994). Biochemistry 33, 4571–4576.

    Article  CAS  PubMed  Google Scholar 

  • Blair, P. V. (1967). Methods Enzymol. 10, 78–81.

    CAS  Google Scholar 

  • Blandini, F., Nappi, G., and Greenamyre, J. T. (1998). Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 13, 11–15.

    CAS  PubMed  Google Scholar 

  • Boveris, A., and Cadenas, E. (1975). Mitochondrial production of superoxide anions and its relationship to the antimycin snsensitive respiration. FEBS Lett. 54, 311–314.

    CAS  PubMed  Google Scholar 

  • Boveris, A., and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbalic oxygen. Biochem. J. 134, 707–716.

    CAS  PubMed  Google Scholar 

  • Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976). Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435–444.

    CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254.

    CAS  PubMed  Google Scholar 

  • Brand, M. D., Affourtit, C., Esteves, C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., and Parker, N. (2004). Mitochondrial superoxide production, biological effects, and activation of uncoupling proteins. Free Rad. Biol. Med. 37, 755–767.

    CAS  PubMed  Google Scholar 

  • Brandt, U., Kerscher, S., Drose, S., Zwicker, K., and Zickermann, V. (2003). Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett. 545, 9–17.

    CAS  PubMed  Google Scholar 

  • Burbaev, D. S., Moroz, I. A., Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1989). Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain. FEBS Lett. 254, 47–51.

    CAS  Google Scholar 

  • Chakraborti, T., Das, S., Mondal, M., Roychoudhury, S., and Chakraborti, S. (1999). Oxidant, mitochondria and calcium: An overview. Cell Signal 11, 77–85.

    CAS  PubMed  Google Scholar 

  • Chance, B., and Hagihara, B. (1963). Direct spectroscopic measurements of interaction of components of the respiratory chainwith ATP, ADP, phosphate, and uncoupling agents. In Proceedings of the 5th International Congress of Biochemistry Vol. 5, Pergamon Press, Oxford, New York, pp. 3–13.

  • Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003). Pruduction of reactive oxygen species by mitochondria. J. Biol. Chem. 278, 36027–36031.

    CAS  PubMed  Google Scholar 

  • Crofts, A. R., Meinhardt, S. W., Jones, K. R., and Snozzi, M. (1983). The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified Q-cycle mechanism. Biochim. Biophys. Acta 723, 202–218.

    CAS  Google Scholar 

  • De Vries, S., Albracht, S. P., Berden, J. A., and Slater, E. C. (1981). A new species of bound ubisemiquinone anion in QH2: Cytochrome c oxidoreductase. J. Biol. Chem. 256, 11996–11998.

    CAS  PubMed  Google Scholar 

  • Degli Esposti, M., Crimi, M., and Ghelli, A. (1994). Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. Biochem. Soc. Trans. 22, 209–213.

    CAS  PubMed  Google Scholar 

  • Dunnett, S. B., and Bjorklund, A. (1999). Prospects for new restorative and neuroprotective treatmens in Parkinson’s disease. Nature 359, A32–A39.

    Google Scholar 

  • Enroth, C., Eger, B. T., Okamoto, K., Nishino, T., Nishino, T., and Pai, E. (2000). Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Struicdture-based mechanism of conversion. Proc. Natl. Acad. Sci. U.S.A. 97, 10723–10728.

    CAS  PubMed  Google Scholar 

  • Esteves, T. C., Echtay, K. S., Jonassen, T., Clarke, C. F., and Brand, M.~D. (2004). Biochem. J. 379, 309–315.

    CAS  PubMed  Google Scholar 

  • Flemming, D., Schlitt, A., Spehr, V., Boishof, T., and Friedrich, T. (2003). Iron-sulfur cluster N2 of the Escherichia coli NADH: Ubiquinone oxidoreductase (complex I) is located on subunit Nuo B. J. Biol. Chem. 276, 47602–47609.

    Google Scholar 

  • Fleury, C., Mignotte, B., and Vayssiere, J. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131–141.

    CAS  PubMed  Google Scholar 

  • Friedrich, T., van Heek, P., Ohnishi, T., Forche, E., Kunze, B., Jansen, R., Trowitzsche-Kienast, W., Hofle, G., Reichenbach, H., and Weiss, H. (1994). Two binding sites of inhibitors in NAADH ubiquinone oxidoreductase (complex I): Relationship of one site with the ubiquinone-binding site of bacterial glucose ubiquinone oxidoreductase. Eur. J. Biochem. 2196.

  • Furuno, T., Kanno, T., Arita, K., Asami, M., Utsumi, T., Doi, Y., Inoue, M., and Utsumi, K. (2001). Role of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem. Pharmacol. 62, 1037–1046.

    CAS  PubMed  Google Scholar 

  • Genova, M. L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti, C. G., and Lenaz, G. (2001). The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 505, 364–368.

    CAS  PubMed  Google Scholar 

  • Gillis, J. C., Benfield, P., and McTavish, D. (1994). Idebenone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in age-related cognitive disorders. Drugs Aging 5, 133–152.

    CAS  PubMed  Google Scholar 

  • Grivennikova, V. G., Maklashina, E. O., Gavrikova, E. V., and Vinogradov, A. D. (1997). Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Biochim. Biophys. Acta 1319, 223–232.

    CAS  PubMed  Google Scholar 

  • Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163.

    CAS  PubMed  Google Scholar 

  • Halliwell, B. (1992). Reactive oxygen species in the centrl nervous system. J. Neurochem. 59, 1609–1623.

    CAS  PubMed  Google Scholar 

  • Herrero, A., and Barja, G. (2000). Localization of site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32, 609–615.

    CAS  PubMed  Google Scholar 

  • Ide, T., Tsutsui, H., Kinugawa, S., Suematsu, N. Hayashidani, S., Ichikawa, K., Utsumi, H., Machida, Y., Egashira, K., and Takeshita, A. (2000). Direct evidence for increased hydrosyl radicals originating from superoxide in the failing myocardium. Circ. Res. 86, 152–157.

    CAS  PubMed  Google Scholar 

  • Ide, T., Tsutsui, H., Kinugawa, S., Utsumi, H., Kang, D., Hattori, N., Uchida, K., Arimura, K., Ehashi, K., and Takeshita, A. (1999). Mitochondrialelectron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res. 85, 357–363.

    CAS  PubMed  Google Scholar 

  • Ingledew, W. J., and Ohnishi, T. (1980). An analysis of some thermodynamic properties of iron-sulfur centres in site I of mitochondria. Biochem. J. 186, 111–117.

    CAS  PubMed  Google Scholar 

  • Ino, T., Nishioka, T., and Miyoshi, H. (2003). Characterization of inhibitor binding sites of mitochondrial complex I using fluorescent inhibitor. Biochim. Biophys. Acta 1605, 15–20.

    CAS  PubMed  Google Scholar 

  • Iverson, T., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (1999). Structure of the E. coli fumarate reductase respiratory complex. Science 284, 1961–1966.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J. E., Jr., Choksi, K., and Widger, W. R. (2003). NADH-ubiquinone oxidoreductase: Substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion 3, 97–110.

    Google Scholar 

  • Kotlyar, A. B., and Vinogradov, A. D. (1990). Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta 1019, 151–158.

    CAS  PubMed  Google Scholar 

  • Kudin, A. P., Bimpong-Buta, N. Y.-B., Vielhaber, S., Elger, C. E., and Kunz, W. S. (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127–4135.

    CAS  PubMed  Google Scholar 

  • Kushnaeva, Y., Murrhy, A. N., and Andreyev, A. (2002). Complex-I mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 368, 545–553.

    PubMed  Google Scholar 

  • Lambert, A. J., and Brant, M. D. (2004). Inhibitors of the quinone-binding site allow rapid superoxide production from mitocondrial NADH:ubiquinone oxidoreductase (compolex I). J. Biol. Chem. 279, 39414–39420.

    CAS  PubMed  Google Scholar 

  • Lancaster, C. R. D., Kröger, A., Auer, M., and Michel, H. (1999). Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Lenaz, G., Bovina, C., D’Aurelio, M., Fato, R., Formiggini, G., Genova, M. L., Giuliano, G., Pich, M., Paolucci, U., Castelli, G., and Ventura, B. (2002). Role of mitochondria in oxidative stress and aging. Ann. N.Y. Acad. Sci. 959, 199–213.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Fiskum, G., and Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport. J. Neurochem. 80, 780–787.

    CAS  PubMed  Google Scholar 

  • Löw, H., and Vallin, I. (1963). Succinate-linked diphosphopyridine nucleotide reduction in submitochondrial particles. Biochim. Biophys. Acta 69, 361–374.

    Google Scholar 

  • Luft, R. (1994). The development of mitochondrial medicine. Proc. Natl. Acad. Sci. USA 91, 8731–8738.

    CAS  PubMed  Google Scholar 

  • Magnitsky, S., Toulokhonova, L., Yano, T., Sled, V. D., Hägerhäll, C., Grivennikofva, V. G., Burbaev, D. S., Vinogradov, A. D., and Ohnishi, T. (2002). EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of energy couplint in the NADH-ubiquinone oxidoreductase (complex I) in situ. J. Bioenerg. Biomembr 34, 193–208.

    CAS  PubMed  Google Scholar 

  • Maklashina, E., Kotylyar, A. B., and Cecchini, G. (2003). Active/de-actice transition of respiratory complex I in bacteria, fungi, and animals. Biochim. Biophys. Acta 1606, 95–103.

    CAS  PubMed  Google Scholar 

  • Maklashina, E., Sher, Y., Zhou, H.-Z., Gray, M. O., Karliner, J. S., and Cecchini, G. (2002). Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart. Biochim. Biophys. Acta 1556, 6–12.

    CAS  PubMed  Google Scholar 

  • Mamedova, A. A., Holt, P. J., Carroll, J., and Sazanov, L. A. (2004). Substrate-induced conformational change in bacterial complex I. J. Biol. Chem. 279, 23830–23836.

    CAS  PubMed  Google Scholar 

  • Mancini, M., Nicholson, D., Roy, S., Thornberry, N., Peterson, E., Casciola-Rosen, L., and Rosen, A. (1998). The caspase-3 precursor has a cytosolic and mitochondrial distribution: Implications for apoptotic signaling. J. Cell Biol. 140, 1485–1495.

    CAS  PubMed  Google Scholar 

  • Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T., Macho, A., Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996). Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155–1160.

    CAS  PubMed  Google Scholar 

  • Mela, L., and Seitz, S. (1979). Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol. 55, 39–46.

    CAS  PubMed  Google Scholar 

  • Mitchell, P. (1975). The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139.

    CAS  PubMed  Google Scholar 

  • Miwa, S., and Brand, M. D. (2003). Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem. Soc. Trans. 31, 1300–1301.

    CAS  PubMed  Google Scholar 

  • Miyadera, H., Kano, K., Miyoshi, H., Ishii, N., Hekimi, S., and Kita, K. (2002). Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett. 512, 33–37.

    CAS  PubMed  Google Scholar 

  • Mizuno, Y., Sone, N., and Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 48, 1787–1793.

    CAS  PubMed  Google Scholar 

  • Mohanty, J., Jaffe, J., Schulman, E., and Raible, D. G. (1997). A highly sensitive fluorescencnt micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133–141.

    CAS  PubMed  Google Scholar 

  • Muller, F. (2000). The nature mechanism of superoxide productionby the electron transpot chain: Its relevance to aging. J. Am. Aging Assoc. 23, 227–253.

    CAS  Google Scholar 

  • Muller, F. L., Roberts, A. G., Bowman, M. K., and Kramer, D. M. (2003). Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 42, 6493–6499.

    CAS  PubMed  Google Scholar 

  • Nishikimi, A., Kira, Y., Kasahara, E., Sato, E. F., Kanno, T., Utsumi, K., and Inoue, M. (2001). Tributyltin interacts with mitochondria and induces cytochrome c release. Biochem. J. 356, 621–626.

    CAS  PubMed  Google Scholar 

  • Ohnishi, T. (1987). Structure of the succinate-ubiquinone oxidoreductase (complex II). In Current Topics in Bioenergetics (Lee, C. P., ed.), Vol. 15, Academic Press, New York, pp. 37–65.

    Google Scholar 

  • Ohnishi, T. (1998). Iron sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364, 186–206.

    CAS  PubMed  Google Scholar 

  • Ohnishi, T., and Trumpower, B. L. (1980). Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate-cytochrome c reductase complex. J. Biol. Chem. 255, 3278–3284.

    CAS  PubMed  Google Scholar 

  • Ohnishi, T., Johnson, J. E., Jr., Yano, T., LoBrutto, R., and Widger, W. R. (2005). Thermodynamic and EPR studies of slowly-relaxing SQ species in the isolated bovine heart complex I. FEBS Lett. 579, 500–506.

    CAS  PubMed  Google Scholar 

  • Ohnishi, T., Meinhardt, S. W., von Jagow, G., Yagi, T., and Hatefi, Y. (1994). Effect of ethoxyformic anyhydride on the Rieske iron-sulfur protein of bovine heart ubiquinol: Cytochrome c oxidoreductase. FEBS Lett. 353, 103–107.

    CAS  PubMed  Google Scholar 

  • Okun, J. G., Lummen, P., and Brandt, U. (1999). Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J. Biol. Chem. 274, 2625–2630.

    CAS  PubMed  Google Scholar 

  • Petlicki, J., and van de Ven, T. G. M. (1998). The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solution in contact with oxygen. J. Chem. Soc. Faraday Trans. 94, 2763–2767.

    CAS  Google Scholar 

  • Ragan, C. I. (1987). Structure of NADH-ubiquinone reductase (Complex I). Curr. Top. Bioenerg. 15, 1–36.

    CAS  Google Scholar 

  • Ragan, C. I., Ohnishi, T., and Hatefi, Y. (1986). Iron-sulphur proteins of mitochondrial NADH-ubiquinone reductase (complex I). In Iron-Sulfur Protein Research (Matsubara, H., et al., eds.), Japan Scientific Socities Press, Tokyo, pp. 220–231.

    Google Scholar 

  • Ramsay, R. R., and Singer, T. P. (1992). Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A and MPP+. Biochem. Biophys. Res. Commun. 189, 47–52.

    CAS  PubMed  Google Scholar 

  • Robinson, B. H. (1998). Human complex I deficiency: Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim. Biophys. Acta 1364, 271–286.

    CAS  PubMed  Google Scholar 

  • Rustin, P., Von Kleist-Retzow, J. C., Chantrel-Goussard, K. S. D., Munnich, A., and Rotig, A. (1999). NADH-quinone oxidoreductase, the most complex complex. Lancet 354, 477–479.

    CAS  PubMed  Google Scholar 

  • Schapira, A. H. V. (1998). Human complex i defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364, 261–270.

    CAS  PubMed  Google Scholar 

  • Sled, V. D., Rudnitzky, N. I., Hatefi, Y., and Ohnishi, T. (1994). Thermodynamic analysis of flavin in mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry 33, 10069–10075.

    CAS  PubMed  Google Scholar 

  • Sun, J., and Trumpower, B. L. (2003). Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. 419, 198–206.

    CAS  PubMed  Google Scholar 

  • Takeshige, K., and Minakami, S. (1979). NADH and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180, 129–135.

    CAS  PubMed  Google Scholar 

  • Talbot, D. A., Lambert, A. J., and Brand, M. D. (2004). Production of endogenous matrix superoxide from mitochondria complex K leads to activation of uncoupling protein 3. FEBS Lett. 556, 111–115.

    CAS  Google Scholar 

  • Tatton, W. G., Olanow, C. W., Tatton, W. G., and Olanow, C. W. (1999). Biochim. Biophys. Acta 1410, 195–213.

    CAS  PubMed  Google Scholar 

  • Toth, P. P., Ferguson-Miller, S. M., and Suelter, C. H. (1986). Methods Enzymol. 125, 16–27.

    CAS  PubMed  Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980). Generation of superoxide anion by NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427.

    CAS  PubMed  Google Scholar 

  • Umeda, S., Muta, T., and Ohsato, T. (2000). The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin. Eur. J. Biochem. 267, 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Vik, S. B., and Hatefi, Y. (1984). Inhibition of mitochondrial NADH: Ubiquinone oxidoreductase by ethoxyformic anhydride. Biochem. Int. 9, 547–555.

    CAS  PubMed  Google Scholar 

  • Vinogradov, A. (1998). Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364, 169–185.

    CAS  PubMed  Google Scholar 

  • Yagi, T., Vik, S. B., and Hatefi, Y. (1982). Biochemistry 21, 4777–4782.

    Article  CAS  PubMed  Google Scholar 

  • Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Yano, T., Dunham, W. R., and Ohnishi, T. (2005). Characterization of the ΔμH+-sensitive SQ species (SQNf) and the interaction with cluster N2: New insight into the energy-coupled electron transfer in complex I. Biochemistry, 44, 1744–1754.

    CAS  PubMed  Google Scholar 

  • Yano, T., Sklar, J., Nakamaru-Ogiso, E., Takahashi, Y., Yagi, T., and Ohnishi, T. (2003). Characterization of cluster N5 as a fast-relaxing [4Fe-4S] cluster in the Nqo3 subunit od the proton-translocating NADH-ubiquinone oxidoeductase from paracoccus denitrificans. J. Biol. Chem. 278, 15514–15522.

    CAS  PubMed  Google Scholar 

  • Young, T. A., Cunningham, C. C., and Bailey, S. M. (2002). Arch. Biochem. Biophys. 405, 65–72.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Yu, L., and Yu, C.-A. (1998). Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273, 33972–33976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tsuyoshi Ohnishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnishi, S.T., Ohnishi, T., Muranaka, S. et al. A Possible Site of Superoxide Generation in the Complex I Segment of Rat Heart Mitochondria. J Bioenerg Biomembr 37, 1–15 (2005). https://doi.org/10.1007/s10863-005-4117-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-4117-y

Keywords

Navigation