Skip to main content
Log in

Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly(N-isopropylacrylamide-co-butylacrylate)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cell sheet technology is a promising step forward in tissue engineering. Cell sheets are usually generated using Poly(N-isopropylacrylamide) hydrogels due to their swelling change around the lower critical solution temperature (LCST). Nevertheless, LCST can be affected by cell culture medium components and therefore it is necessary to ensure that the polymer preserves its thermosensitivity under these conditions. We propose a novel thermosensitive crosslinked-copolymer: Poly(N-isopropylacrylamide-co-butylacrylate). This copolymer is shown to be cytocompatible and thermosensitive under cell culture medium conditions, and besides, it can be synthesized inexpensively. Thermosensitivity was investigated by determining the LCST with differential scanning calorimetry and swelling/ratio measurements. Cytocompatibility and capacity to deliver cell sheets were studied employing 3T3 and human oral epithelial cells. In conclusion, we obtained a thermosensitive copolymer that allows cell sheet formation/detachment by using a simple and low-cost polymerization method. Furthermore, crosslinking allows easy manipulation of cell sheets growing on the copolymer for potential in situ applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dusek K. Responsive gels: volume transitions I. In Sigitov VB editor. Advances in polymer science, vol 109. Heidelberg: Springer; 1993.

  2. Dimitrov I, et al. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci. 2007;32(11):1275–343.

    Article  CAS  Google Scholar 

  3. Ding Y, Ye X, Zhang G. Can coil-to-globule transition of a single chain be treated as a phase transition? J Phys Chem B. 2008;112(29):8496–8.

    Article  CAS  Google Scholar 

  4. Kimhi O, Bianco-Peled H. Microcalorimetry study of the interactions between poly(N-isopropylacrylamide) microgels and amino acids. Langmuir. 2002;18(22):8587–92.

    Article  CAS  Google Scholar 

  5. Elbert DL. Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater. 2011;7(1):31–56.

    Article  CAS  Google Scholar 

  6. Wuo J-Y, et al. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. J Control Release. 2005;102(2):361–72.

    Article  Google Scholar 

  7. Serra L, Doménech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm. 2009;71(3):519–28.

    Article  CAS  Google Scholar 

  8. Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromolecules. 2008;9(4):1293–8.

    Article  CAS  Google Scholar 

  9. da Silva RMP, Mano JF, Reis RL. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol. 2007;25(12):577–83.

    Article  Google Scholar 

  10. Nishida K, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2005;351(12):1187–96.

    Article  Google Scholar 

  11. Inomata H, et al. Effect of additives on phase transition of N-isopropylacrylamide gels. Langmuir. 1992;8(2):687–90.

    Article  CAS  Google Scholar 

  12. Kawasaki H, et al. Saccharide-induced volume phase transition of poly(N-isopropylacrylamide) gels. J Phys Chem. 1996;100(40):16282–4.

    Article  CAS  Google Scholar 

  13. Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res. 2004;23(4):403–34.

    Article  Google Scholar 

  14. Becerra N, Restrepo LM, López BL. Synthesis and characterization of a biocompatible copolymer to be used as cell culture support. Macromol Symp. 2007;258(1):30–7.

    Article  CAS  Google Scholar 

  15. Calandrelli L, et al. Development and performance analysis of PCL/silica nanocomposites for bone regeneration. J Mater Sci Mater Med. 2010;21(11):2923–36.

    Article  CAS  Google Scholar 

  16. Lee W-F, Yeh Y-C. Studies on preparation and properties of NIPAAm/hydrophobic monomer copolymeric hydrogels. Eur Polymer J. 2005;41(10):2488–95.

    Article  CAS  Google Scholar 

  17. Rao SS, Winter J. Adhesion molecule-modified biomaterials for neural tissue engineering. Front Neuroeng. 2009;2. doi:10.3389/neuro.16.006.2009.

  18. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29–39.

    CAS  Google Scholar 

  19. Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):274–91.

    Article  CAS  Google Scholar 

  20. Antonietti M, Hentze HP. Synthesis of sponge-like polymer dispersions via polymerization of bicontinuous microemulsions. Colloid Polym Sci. 1996;274(7):696–702.

    Article  CAS  Google Scholar 

  21. Raj WRP, Sasthav M, Cheung HM. Polymerization of microstructured aqueous systems formed using methyl methacrylate and potassium undecenoate. Langmuir. 1992;8(8):1931–6.

    Article  CAS  Google Scholar 

  22. Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36.

    Article  Google Scholar 

  23. Rzaev ZMO, Dinçer S, Pişkin E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci. 2007;32(5):534–95.

    Article  CAS  Google Scholar 

  24. Zhu D, et al. Effect of adamantyl methacrylate on the thermal and mechanical properties of thermosensitive poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci. 2012;124(1):155–63.

    Article  CAS  Google Scholar 

  25. Haraguchi Y, et al. Scaffold-free tissue engineering using cell sheet technology. RSC Adv. 2012;2(6):2184–90.

    Article  CAS  Google Scholar 

  26. Yang X, Lee HY, Kim J-C. Effect of hydrophobic comonomer content on assembling of poly(N-isopropylacrylamide) and thermal properties. J Appl Polym Sci. 2011;120(4):2346–53.

    Article  CAS  Google Scholar 

  27. Brannon-Peppas L, Peppas NA. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci. 1991;46(3):715–22.

    Article  CAS  Google Scholar 

  28. Volden S, et al. Interactions between bovine serum albumin and Langmuir films composed of charged and uncharged poly(N-isopropylacrylamide) block copolymers. Colloids Surf B. 2012;98:50–7.

    Article  CAS  Google Scholar 

  29. Rezwan K, et al. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV–Vis measurements. Langmuir. 2004;20(23):10055–61.

    Article  CAS  Google Scholar 

  30. Freshney RI. Culture of animal cells: manual of basic technique. 6th ed. New York: Wiley; 2006.

  31. Eeckman F, Amighi K, Moës AJ. Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm. 2001;222(2):259–70.

    Article  CAS  Google Scholar 

  32. Krušić MK, Filipović J. Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid. Polymer. 2006;47(1):148–55.

    Article  Google Scholar 

  33. Lee W-F, Lin Y-H. Swelling behavior and drug release of NIPAAm/PEGMEA copolymeric hydrogels with different crosslinkers. J Mater Sci. 2006;41(22):7333–40.

    Article  CAS  Google Scholar 

  34. Chuang W-J, Chiu W-Y, Tai H-J. Thermally crosslinkable poly(N-isopropylacrylamide) copolymers: synthesis and characterization of temperature-responsive hydrogel. Mater Chem Phys. 2012;134(2–3):1208–13.

    Article  CAS  Google Scholar 

  35. Varghese V, et al. In vitro cytocompatibility evaluation of a thermoresponsive NIPAAm-MMA copolymeric surface using L929 cells. J Mater Sci Mater Med. 2010;21(5):1631–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Natalia Becerra was supported by Colciencias, for the fellowship in the National Doctoral 2008 Program. This work has been supported by an internal project of the Medicine (2008) and CODI-Sostenibilidad project (2012–2013), University of Antioquia. Special thanks to Dr. Luis Fernando Correa for the histological analyses, Dr. Manuel Espinosa from the Electronic Microcopy Laboratory for the SEM analyses and Dr. Lorenzo Moroni from University of Twente for valuable comments to the manuscript and their helpful suggestions for changes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Y. Becerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra, N.Y., López, B.L. & Restrepo, L.M. Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly(N-isopropylacrylamide-co-butylacrylate). J Mater Sci: Mater Med 24, 1043–1052 (2013). https://doi.org/10.1007/s10856-013-4861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4861-1

Keywords

Navigation