Skip to main content
Log in

A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993-4

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Subacute stent thrombosis, caused by undesired interactions between blood and the stent surface, is a major concern in the first few weeks following coronary artery stent implantation. The aim of this study was to establish a novel in vitro model for hemocompatibility testing of coronary artery stents according to ISO 10993-4. The model consists of a modified Chandler-Loop design with closed heparin-coated PVC Loops and a thermostated water bath. The tests were performed with anticoagulated human whole blood. After incubation in the loop, blood was analyzed for coagulation and inflammatory activation markers (TAT, β-TG, sP-selectin, SC5b-9 and PMN-elastase). Three different stent types with varying thrombogenicity were tested; statistically significant differences were found between the three stent types in measures of coagulation and platelet activation. The new Chandler-Loop model can be used as an alternative to animal and current in vitro models, especially for the determination of early events after stent implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316(12):701–6.

    Article  CAS  Google Scholar 

  2. Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M. Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials. 2002;23(14):2997–3005.

    Article  CAS  Google Scholar 

  3. Mrowietz C, Franke RP, Seyfert UT, Park JW, Jung F. Haemocompatibility of polymer-coated stainless steel stents as compared to uncoated stents. Clin Hemorheol Microcirc. 2005;32(2):89–103.

    CAS  Google Scholar 

  4. Arab D, Lewis B, Cho L, Steen L, Joyal D, Leya F. Antiplatelet therapy in anticoagulated patients requiring coronary intervention. J Invasive Cardiol. 2005;17(10):549–54.

    Google Scholar 

  5. Romano A, Jensen MR, McAlpine J. Toward the optimization of stent-based treatment for coronary artery disease. Curr Opin Drug Discov Devel. 2010;13(2):157–8.

    CAS  Google Scholar 

  6. Serruys PW, Strauss BH, Beatt KJ, Bertrand ME, Puel J, Rickards AF, et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N Engl J Med. 1991;324(1):13–7.

    Article  CAS  Google Scholar 

  7. Serruys PW, Di MC. Who was thrombogenic: the stent or the doctor? Circulation. 1995;91(6):1891–3.

    CAS  Google Scholar 

  8. Tamberella MR, Furman MI. The role of platelet inhibition in the drug-eluting stent era. Coron Artery Dis. 2004;15(6):327–9.

    Article  Google Scholar 

  9. Palmaz JC. The 2001 Charles T. Dotter lecture: understanding vascular devices at the molecular level is the key to progress. J Vasc Interv Radiol. 2001;12(7):789–94.

    Article  CAS  Google Scholar 

  10. Palmaz JC. Bring that pioneering spirit back! A 25-year perspective on the vascular stent. Cardiovasc Intervent Radiol. 2007;30(6):1095–8.

    Article  Google Scholar 

  11. Davis C, Fischer J, Ley K, Sarembock IJ. The role of inflammation in vascular injury and repair. J Thromb Haemost. 2003;1(8):1699–709.

    Article  CAS  Google Scholar 

  12. Chandler AB. In vitro thrombotic coagulation of the blood; a method for producing a thrombus. Lab Invest. 1958;7(2):110–4.

    CAS  Google Scholar 

  13. Song W, Lee J, Kim H, Shin J, Oh D, Tio F, et al. A new percutaneous porcine coronary model of chronic total occlusion. J Invasive Cardiol. 2005;17(9):452–4.

    Google Scholar 

  14. Tanigawa N, Sawada S, Kobayashi M. Reaction of the aortic wall to six metallic stent materials. Acad Radiol. 1995;2(5):379–84.

    Article  CAS  Google Scholar 

  15. Kaminska M, Okroj W, Szymanski W, Jakubowski W, Komorowski P, Nosal A, et al. Interaction of parylene C with biological objects. Acta Bioeng Biomech. 2009;11(3):19–25.

    Google Scholar 

  16. Seyfert UT, Perkins S, Kummel M. Hemocompatibility testing of polymers. Beitr Infusionsther Transfusionsmed. 1996;33:241–6.

    CAS  Google Scholar 

  17. Seyfert UT, Biehl V, Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol Eng. 2002;19(2–6):91–6.

    Article  CAS  Google Scholar 

  18. Szapary L, Bagoly E, Kover F, Feher G, Pozsgai E, Koltai K, et al. The effect of carotid stenting on rheological parameters, free radical production and platelet aggregation. Clin Hemorheol Microcirc. 2009;43(3):209–17.

    CAS  Google Scholar 

  19. Gupta V, Aravamuthan BR, Baskerville S, Smith SK, Gupta V, Lauer MA, et al. Reduction of subacute stent thrombosis (SAT) using heparin-coated stents in a large-scale, real world registry. J Invasive Cardiol. 2004;16(6):304–10.

    Google Scholar 

  20. Beythien C, Gutensohn K, Bau J, Hamm CW, Kuhnl P, Meinertz T, et al. Influence of stent length and heparin coating on platelet activation: a flow cytometric analysis in a pulsed floating model. Thromb Res. 1999;94(2):79–86.

    Article  CAS  Google Scholar 

  21. Gemmell CH. Activation of platelets by in vitro whole blood contact with materials: increases in microparticle, procoagulant activity, and soluble P-selectin blood levels. J Biomater Sci Polym Ed. 2001;12(8):933–43.

    Article  CAS  Google Scholar 

  22. Inoue T, Hikichi Y, Morooka T, Yoshida K, Fujimatsu D, Komoda H, et al. Comparison of changes in circulating platelet-derived microparticles and platelet surface P-selectin expression after coronary stent implantation. Platelets. 2006;17(6):416–20.

    Article  CAS  Google Scholar 

  23. Tylman M, Bengtson JP, Bengtsson A. Activation of the complement system by different autologous transfusion devices: an in vitro study. Transfusion. 2003;43(3):395–9.

    Article  Google Scholar 

  24. Beythien C, Terres W, Hamm CW. In vitro model to test the thrombogenicity of coronary stents. Thromb Res. 1994;75(6):581–90.

    Article  CAS  Google Scholar 

  25. Hong J, Nilsson EK, Reynolds H, Larsson R, Nilsson B. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin. Biomaterials. 1999;20(7):603–11.

    Article  CAS  Google Scholar 

  26. Tu Q, Zhao Y, Xue X, Wang J, Huang N (2010) Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells. Tissue Eng A. 16(12):3635–45.

    Google Scholar 

Download references

Acknowledgments

The authors thank Karl-Heinz Hellmer for the excellent support during the SEM procedures. Tests and stent delivery systems were sponsored by Boston Scientific Corporation, Natick, MA, USA. Furthermore the authors thank Barbara A. Huibregtse and Michael J. Eppihimer (Boston Scientific Corporation, Pre-clinical department, 1 Boston Scientific Place, Natick, MA 01760 USA), Kristin L. Hood (Boston Scientific Corporation, Scientific communications, 100 Boston Scientific Way, Marlborough, MA 01752-1234 USA) and Nic Van Dyck (Boston Scientific Corporation, Clinical department, Gaetano Martinolaan 50, 6229 GS Maastricht Netherlands) for their valuable work of reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans P. Wendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinn, S., Scheuermann, T., Deichelbohrer, S. et al. A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993-4. J Mater Sci: Mater Med 22, 1521–1528 (2011). https://doi.org/10.1007/s10856-011-4335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4335-2

Keywords

Navigation