Skip to main content

Advertisement

Log in

Creation of macroporous calcium phosphate cements as bone substitutes by using genipin-crosslinked gelatin microspheres

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Macroporous calcium phosphate cements (CPCs) were developed using genipin-crosslinked gelatin microspheres (GMs) with two weight ratios (2.5 wt% and 5 wt%). The initial setting time of the composite was prolonged by GMs. After GMs/CPCs were soaked in phosphate-buffered saline (PBS) for several weeks, macropores appeared as a result of the degradation of GMs. The presence of GMs accelerated the setting reaction and improved the structure of the composite. The compressive strength increased up to 12 MPa (2.5 wt% GMs/CPCs) and 14 MPa (5 wt% GMs/CPCs) after one week of PBS soaking, then gradually decreased to 9 MPa (2.5 wt% GMs/CPCs) and 7 MPa (5 wt% GMs/CPCs) after three weeks of soaking, and further to 6 MPa (2.5 wt% GMs/CPCs) and 2 MPa (5 wt% GMs/CPCs) after five weeks of soaking. CPCs with 2.5 wt% GMs were the most favorable composite in the tested samples. Cell experiments showed that rat osteoblasts displayed normal morphologies when exposed to the 2.5 wt% GMs/CPCs, and proliferation of the cells was also enhanced. An in vivo study showed that new bone tissue was able to grow into the pores that resulted from GM degradation. This study suggests that the new composite could be a promising candidate for use as a bone substitute under non-compression-loaded circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Comuzzi, E. Ooms, J.A. Jansen, Clin. Oral Implants Res. 13, 304 (2002). doi:10.1034/j.1600-0501.2002.130311.x

    Article  PubMed  Google Scholar 

  2. E.M. Ooms, J.G. Wolke, J.P. van der Waerden, J.A. Jansen, J. Biomed. Mater. Res. 61, 9 (2002). doi:10.1002/jbm.10029

    Article  PubMed  CAS  Google Scholar 

  3. M.R. Sarkar, N. Wachter, P. Patka, L. Kinzl, J. Biomed. Mater. Res. 58, 329 (2001). doi:10.1002/1097-4636(2001)58:3<329::AID-JBM1025>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  4. R.Z. LeGeros, J.R. Parsons, G. Daculsi, F. Driessens, D. Lee, S.T. Liu, S. Metsger, D. Peterson, M. Walker, Ann. NY Acad. Sci. 523, 268 (1988). doi:10.1111/j.1749-6632.1988.tb38519.x

    Article  PubMed  ADS  CAS  Google Scholar 

  5. L.C. Chow, Monogr. Oral Sci. 18, 148 (2001). doi:10.1159/000061653

    Article  PubMed  CAS  Google Scholar 

  6. M.F. Baslé, D. Chappard, F. Grizon, R. Filmon, J. Delecrin, G. Daculsi, A. Rebel, Calcif. Tissue Int. 53, 348 (1993). doi:10.1007/BF01351842

    Article  PubMed  Google Scholar 

  7. C.M. Clokie, H. Moghadam, M.T. Jaskson, G.K. Sandor, J. Craniofac. Surg. 13, 111 (2002). doi:10.1097/00001665-200201000-00026

    Article  PubMed  Google Scholar 

  8. H. Schliephake, R. Grubber, M. Dard, R. Wenz, S. Scholz, J. Biomed. Mater. Res. A 69, 382 (2004). doi:10.1002/jbm.a.20121

    Article  PubMed  CAS  Google Scholar 

  9. P.Q. Ruhé, E.L. Hedberg-Dirk, N.T. Padron, P.H. Spauwen, J.A. Jansen, A.G. Mikos, Tissue Eng. 12, 789 (2006). doi:10.1089/ten.2006.12.789

    Article  PubMed  Google Scholar 

  10. R.P. del Real, E. Ooms, J.G. Wolke, M. Vallet-Regí, J.A. Jansen, J. Biomed. Mater. Res. A 65, 30 (2003). doi:10.1002/jbm.a.10432

    Article  PubMed  CAS  Google Scholar 

  11. S. Takagi, L.C. Chow, J. Mater. Sci. Mater. Med. 12, 135 (2001). doi:10.1023/A:1008917910468

    Article  PubMed  CAS  Google Scholar 

  12. Y. Zhang, H.H. Xu, S. Takagi, L.C. Chow, J. Mater. Sci. Mater. Med. 5, 437 (2006). doi:10.1007/s10856-006-8471-z

    Article  Google Scholar 

  13. H.H. Xu, M.D. Weir, E.F. Burguera, A.M. Fraser, Biomaterials 24, 4279 (2006). doi:10.1016/j.biomaterials.2006.03.001

    Article  Google Scholar 

  14. H.H. Xu, L.E. Carey, C.G. Simon Jr, Simon. J. Mater. Sci. Mater. Med. 18, 1345 (2007). doi:10.1007/s10856-007-0146-x

    Article  PubMed  CAS  Google Scholar 

  15. S. Hesaraki, F. Moztarzadeh, D. Sharifi, J. Biomed. Mater. Res. A 83, 80 (2007). doi:10.1002/jbm.a.31196

    PubMed  CAS  Google Scholar 

  16. S. Sarda, M. Nilsson, M. Balcells, E. Fernandez, J. Biomed. Mater. Res. A 65, 215 (2003). doi:10.1002/jbm.a.10458

    Article  PubMed  CAS  Google Scholar 

  17. D.P. Link, J. van den Dolder, W.J. Jurgens, J.G. Wolke, J.A. Jansen, Biomaterials 27, 4941 (2006). doi:10.1016/j.biomaterials.2006.05.022

    Article  PubMed  CAS  Google Scholar 

  18. W.J. Habraken, J.G. Wolke, A.G. Mikos, J.A. Jansen, J. Biomater. Sci. Polym. Ed. 17, 1057 (2006). doi:10.1163/156856206778366004

    Article  PubMed  CAS  Google Scholar 

  19. E.W. Bodde, O.C. Boerman, F.G. Russel, A.G. Mikos, P.H. Spauwen, J.A. Jansen, J. Biomed. Mater. Res. A [Jan 15, Epub ahead of print] (2008)

  20. Z. Fei, Y. Hu, D. Wu, H. Wu, R. Lu, J. Bai, H. Song, J. Mater. Sci. Mater. Med. 19, 1109 (2008). doi:10.1007/s10856-007-3050-5

    Article  PubMed  CAS  Google Scholar 

  21. P.Q. Ruhé, O.C. Boerman, F.G. Russel, P.H. Spauwen, A.G. Mikos, J.A. Jansen, J. Control Release 106, 162 (2005). doi:10.1016/j.jconrel.2005.04.018

    Article  PubMed  Google Scholar 

  22. Z. Pan, P. Jiang, Q. Fan, B. Ma, H. Cai, J. Biomed. Mater. Res. B Appl. Biomater. 82, 246 (2007). doi:10.1002/jbm.b.30727

    PubMed  Google Scholar 

  23. A. Bigi, B. Bracci, S. Panzavolta, Biomaterials 25, 2893 (2004). doi:10.1016/j.biomaterials.2003.09.059

    Article  PubMed  CAS  Google Scholar 

  24. Y. Fujishiro, K. Takahashi, T. Sato, J. Biomed. Mater. Res. 54, 525 (2001). doi:10.1002/1097-4636(20010315)54:4<525::AID-JBM80>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  25. M.Y. Shie, D.C. Chen, C.Y. Wang, T.Y. Chiang, S.J. Ding, Acta Biomater. 4, 646 (2008). doi:10.1016/j.actbio.2007.10.011

    Article  PubMed  CAS  Google Scholar 

  26. A. Bigi, P. Torricelli, M. Fini, B. Bracci, S. Panzavolta, L. Sturba, R. Giardino, Int. J. Artif. Organs 27, 664 (2004)

    PubMed  CAS  Google Scholar 

  27. A. Bigi, S. Panzavolta, L. Sturba, P. Torricelli, M. Fini, R. Giardino, J. Biomed. Mater. Res. A 78, 739 (2006). doi:10.1002/jbm.a.30765

    PubMed  CAS  Google Scholar 

  28. H.C. Liang, W.H. Chang, K.J. Lin, H.W. Sung, J. Biomed. Mater. Res. A 65, 271 (2003). doi:10.1002/jbm.a.10476

    Article  PubMed  Google Scholar 

  29. H.J. Wei, H.H. Yang, C.H. Chen, W.W. Lin, S.C. Chen, P.H. Lai, Y. Chang, H.W. Sung, J. Control Release 120, 27 (2007). doi:10.1016/j.jconrel.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  30. M.I. Ugwoke, R. Kinget, J. Microencapsul. 15, 273 (1998). doi:10.3109/02652049809006857

    Article  PubMed  CAS  Google Scholar 

  31. W.J. Habraken, L.T. de Jonge, J.G. Wolke, L. Yubao, A.G. Mikos, J.A. Jansen, J. Biomed. Mater.Res. A [Jan 11, Epub ahead of print] (2008)

  32. L.E. Carey, H.H. Xu Jr, C.G. Simon, S. Takagi, L.C. Chow, Biomaterials 26, 5002 (2005). doi:10.1016/j.biomaterials.2005.01.015

    Article  PubMed  CAS  Google Scholar 

  33. W.C. Vrouwenvelder, G.G. Groot, K. de Groot, Biomaterials 13, 382 (1992). doi:10.1016/0142-9612(92)90044-O

    Article  PubMed  CAS  Google Scholar 

  34. M. Kon, Y. Miyamoto, K. Asaoka, K. Ishikawa, H.H. Lee, Dent. Mater. J. 17, 223 (1998)

    PubMed  CAS  Google Scholar 

  35. E. Ferna′ndez, F.J. Gil, M.P. Ginebra, F.C. Driessens, J.A. Planell, S.M. Best, J. Mater. Sci. Mater. Med. 10, 223 (1999). doi:10.1023/A:1008958112257

    Article  CAS  Google Scholar 

  36. H. el-Briak, D. Durand, J. Nurit, S. Munier, B. Pauvert, P. Boudeville, J. Biomed. Mater. Res. 63, 447 (2002). doi:10.1002/jbm.10257

    Article  PubMed  CAS  Google Scholar 

  37. A.I. Itälä, H.O. Ylänen, C. Ekholm, K.H. Karlsson, H.T. Aro, J. Biomed. Mater. Res. 58, 679 (2001). doi:10.1002/jbm.1069

    Article  PubMed  Google Scholar 

  38. H.W. Sung, R.N. Huang, L.L. Huang, C.C. Tsai, C.T. Chiu, J. Biomed. Mater. Res. 42, 560 (1998). doi:10.1002/(SICI)1097-4636(19981215)42:4<560::AID-JBM12>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  39. C.H. Yao, B.S. Liu, S.H. Hsu, Y.S. Chen, C.C. Tsai, J. Biomed. Mater. Res. A 69, 709 (2004). doi:10.1002/jbm.a.30045

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Medical Science Research Foundation of Chinese People’s Liberation Army (Grant Number of 06MA090) and Natural Science Foundation of Gansu Province (Grant Number of 0710RJZA068). CPCs were kindly supplied by Shanghai Rebone Biomaterials (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Liu, X., Liu, X. et al. Creation of macroporous calcium phosphate cements as bone substitutes by using genipin-crosslinked gelatin microspheres. J Mater Sci: Mater Med 20, 925–934 (2009). https://doi.org/10.1007/s10856-008-3654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3654-4

Keywords

Navigation