Skip to main content
Log in

Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Sn3.0Ag0.5Cu (wt%) lead-free solder alloy is considered to be one of the most promising alternatives to replace the traditionally used Sn–Pb solders. This alloy composition possesses, however, some weaknesses, mainly as a result of its higher melting temperature compared to the eutectic Sn–Pb solders. Nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy nanoparticles were prepared by chemical reduction with NaBH4 as a reducing agent at room temperature. The melting temperature of the synthesized Sn3.0Ag0.5Cu alloy nanoparticles was determined by differential scanning calorimetry (DSC). The results showed that the calorimetric onset melting temperature of the Sn3.0Ag0.5Cu alloy nanoparticles could be as low as 200 °C, which was about 17 °C lower than that of the bulk alloy (217 °C). The field emission scanning electron microscopy (SEM) images of the as-prepared nanoparticles indicated that the major particle size of Sn3.0Ag0.5Cu nanoparticles is smaller than 50 nm. The structure and morphology of the nanoparticles were analyzed with high resolution transmission electron microscopy (HRTEM). The Ag3Sn and Sn phase were observed in the HRTEM images, which was in good agreement with the XRD results. These low melting temperature Sn3.0Ag0.5Cu alloy nanoparticles show a potential to manufacture high quality lead-free solders for electronic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. C.M.L. Wu, D.Q. Yu, C.M.T. Law et al., Mater. Sci. Eng. R 44, 1 (2004)

    Article  Google Scholar 

  3. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)

    Article  Google Scholar 

  4. I. Ohnuma, M. Miyashita, K. Anzai et al., J. Electron. Mater. 29, 1137 (2000)

    Article  CAS  Google Scholar 

  5. R. Kinyanjui, L.P. Lehman, L. Zavalij et al., J. Mater. Res. 20, 2914 (2005)

    Article  CAS  Google Scholar 

  6. S. Park, R. Dhakal, L. Lehman et al., Acta Mater. 55, 3253 (2007)

    Article  CAS  Google Scholar 

  7. S. Mallik, N.N. Ekere, R. Durairaj et al., Mater. Design 30, 4502 (2009)

    Article  CAS  Google Scholar 

  8. Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)

    Article  CAS  Google Scholar 

  9. M. Takagi, J. Phys. Soc. Jpn. 9, 359 (1954)

    Article  Google Scholar 

  10. T. Bachels, H.-J. Gutherodt, R. Schaer, Phys. Rev. Lett. 85, 1250 (2000)

    Article  CAS  Google Scholar 

  11. M. Quaas, I. Shyjumon, R. Hippler, et al., Z. Kristallogr. Suppl 26, 267 (2007)

    Google Scholar 

  12. L. Wang, Y. Zhang, X. Bian et al., Phys. Lett. A 310, 197 (2003)

    Article  CAS  Google Scholar 

  13. J. Sun, S.L. Simon, Thermochim. Acta 463, 32 (2007)

    Article  CAS  Google Scholar 

  14. M. Dippel, A. Maier, V. Gimple et al., Phys. Rev. Lett. 87, 095505 (2001)

    Article  CAS  Google Scholar 

  15. K.F. Peters, J.B. Cohen, Y.-W. Chung, Phys. Rev. B 57, 13430 (1998)

    Article  CAS  Google Scholar 

  16. P. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  CAS  Google Scholar 

  17. Y. Wang, S. Teitel, C. Dellago, Chem. Phys. Lett. 394, 257 (2004)

    Article  CAS  Google Scholar 

  18. E. Haro-Poniatowski, M. Jimenez De Castro, J. M. Fernandez Navarro, et al., Nanotechnology 18 (2007)

  19. E.A. Olson, M.Y. Efremov, M. Zhang et al., J. Appl. Phys. 97, 034304 (2005)

    Article  Google Scholar 

  20. C.R.M. Wronski, Br. J. Appl. Phys. 18, 1731 (1967)

    Article  CAS  Google Scholar 

  21. G.L. Allen, R.A. Bayles, W.W. Gile et al., Thin Solid Films 144, 297 (1986)

    Article  CAS  Google Scholar 

  22. F.P. Kevin, C. Yip-Wah, B.C. Jerome, Appl. Phys. Lett. 71, 2391 (1997)

    Article  Google Scholar 

  23. S.L. Lai, G. Ramanath, L.H. Allen et al., Appl. Phys. Lett. 67, 1229 (1995)

    Article  CAS  Google Scholar 

  24. S.L. Lai, J.Y. Guo, V. Petrova et al., Phys. Rev. Lett. 77, 99 (1996)

    Article  CAS  Google Scholar 

  25. H.W. Sheng, K. Lu, E. Ma, Acta Mater. 46, 5195 (1998)

    Article  CAS  Google Scholar 

  26. H. Jiang, K.-S. Moon, H. Dong et al., Chem. Phys. Lett. 429, 492 (2006)

    Article  CAS  Google Scholar 

  27. G. Manai, F. Delogu, Physica B 392, 288 (2007)

    Article  CAS  Google Scholar 

  28. E. Haro-Poniatowski, R. Serna, C.N. Afonso et al., Thin Solid Films 453–454, 467 (2004)

    Article  Google Scholar 

  29. W.A. Jesser, G.J. Shiflet, G.L. Allen et al., Mater. Res. Innov. 2, 211 (1999)

    Article  CAS  Google Scholar 

  30. C. Schamp, W. Jesser, Metall. Mater. Trans. A 37, 1825 (2006)

    Article  Google Scholar 

  31. W.A. Jesser, R.Z. Shneck, W.W. Gile, Phys. Rev. B 69, 144121 (2004)

    Article  Google Scholar 

  32. H. Jiang, K.S. Moon, F. Hua et al., Chem. Mater. 19, 4482 (2007)

    Article  CAS  Google Scholar 

  33. H. Jiang, K.-S. Moon and C.P. Wong, in Electronic Components and Technology Conference, ECTC 08 (Florida, USA, 2008) p. 1400

  34. L.Y. Hsiao, J.G. Duh, J. Electrochem. Soc. 152, J105 (2005)

    Article  CAS  Google Scholar 

  35. Y. Gao, C. Zou, B. Yang et al., J. Alloys Compd. 484, 777 (2009)

    Article  CAS  Google Scholar 

  36. P.R. Couchman, W.A. Jesser, Nature 269, 481 (1977)

    Article  CAS  Google Scholar 

  37. Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. Phys. 82, 225 (2003)

    Article  CAS  Google Scholar 

  38. W.H. Qi, M.P. Wang, Mater. Chem. Phys. 88, 280 (2004)

    Article  CAS  Google Scholar 

  39. C. Zou, Y. Gao, B. Yang et al., T. Nonferr. Metal. Soc. 20, 248 (2010)

    Article  CAS  Google Scholar 

  40. R. Fisker, J.M. Carstensen, M.F. Hansen et al., J. Nanopart. Res. 2, 267 (2000)

    Article  CAS  Google Scholar 

  41. E. Muthuswamy, S. Ramadevi, H.N. Vasan et al., J. Nanopart. Res. 9, 561 (2007)

    Article  CAS  Google Scholar 

  42. J. Muñoz, J. Cervantes, R. Esparza et al., J. Nanopart. Res. 9, 945 (2007)

    Article  Google Scholar 

  43. A. Corrias, G. Ennas, G. Licheri et al., Chem. Mater. 2, 363 (1990)

    Article  CAS  Google Scholar 

  44. D. Zeng, M.J. Hampden-Smith, Chem. Mater. 5, 681 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by Science and Technology Commission of Shanghai Municipality (Grant no. 08520740500) and National Natural Science Foundation of China (Grant no. 50971086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Gao, Y., Yang, B. et al. Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression. J Mater Sci: Mater Electron 23, 2–7 (2012). https://doi.org/10.1007/s10854-011-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0376-z

Keywords

Navigation