Skip to main content
Log in

EPR characterization of defects in m-HfO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electron Paramagnetic Resonance (EPR) measurements have been made on a variety of commercially available samples of powdered monoclinic HfO2. The high relative permittivity of HfO2 is one reason that it is being considered as a replacement for SiO2 as the gate dielectric in Si CMOS devices. The aim of the current measurements is to characterize the defects in HfO2. All EPR spectra were taken at a microwave frequency of about 9.5GHz and at room temperature. An axially symmetric spectrum with g// = 1.940 ± 0.003, g = 1.970 ± 0.002 is seen for all but one of the HfO2 samples; it is attributed to centres involving Hf3+ or Ti3+. Their average volume concentration varies from about 1017 cm−3 to less than 1014 cm−3 depending on the product specification and it is unaffected by γ-irradiation. Grinding granules to powder and/or γ-irradiation yields further EPR spectra that are likely to be associated with defects at or near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  CAS  Google Scholar 

  2. J. Robertson, Rep. Progr. Phys. 69, 327 (2006)

    Article  CAS  Google Scholar 

  3. A. Kumar M.V. Fischetti, T.H. Ning, E. Gusev, J. Appl. Phys. 94, 1728 (2003)

    Article  Google Scholar 

  4. E.P. Gusev, C.P.D. Emic, Appl. Phys. Lett. 83, 5223 (2003)

    Article  CAS  Google Scholar 

  5. S. Zafar, A. Callegari, E. Gusev, M.V. Fischetti, J. Appl. Phys. 93, 9298 (2003)

    Article  CAS  Google Scholar 

  6. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes, U. Schwalke, IEEE Elect. Dev. Lett. 24, 87 (2003)

    Article  CAS  Google Scholar 

  7. X.J. Zhou, L. Tsetseris, S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, J.A. Felix, E.P. Gusev, C.D. Emic, Appl. Phys. Lett. 84, 4394 (2004)

    Article  CAS  Google Scholar 

  8. V.V. Afanas’ev, A. Stesmans, J. Appl. Phys. 95, 2518 (2004)

    Article  CAS  Google Scholar 

  9. M. Houssa, S.D. Gendt, J.L. Autran, G. Groeseneken, M.M. Heyns, Appl. Phys. Lett. 85, 2101 (2004)

    Article  CAS  Google Scholar 

  10. M. Houssa, G. Pourtois, M.M. Heyns, A. Stesmans, J. Phys.: Condens. Matter 17, S2075 (2005)

    Article  CAS  Google Scholar 

  11. A.S. Foster, F. Lopez Gejo, A.L. Shluger, R.M. Nieminen, Phys. Rev. B. 65, 174117 (2002)

    Article  Google Scholar 

  12. Y.P. Feng, A.T.L. Lim, M.F. Li, Appl. Phys. Lett. 87, 062105 (2005)

    Article  Google Scholar 

  13. K. Xiong, J. Robertson, M.C. Gibson, S.J. Clark, Appl. Phys. Lett. 87, 183505 (2005)

    Article  Google Scholar 

  14. K. Xiong, J. Robertson, Microelectr. Eng. 80, 408 (2005)

    Article  CAS  Google Scholar 

  15. A.Y. Kang, P.M. Lenahan, J. F. Conley Jr, Appl. Phys. Lett. 83, 3407 (2003)

    Article  CAS  Google Scholar 

  16. A.Y. Kang, P.M. Lenahan, J.J.F. Conley, Y. Ono, IEEE Internat. Integ. Reliability Workshop (2003) p. 24

  17. A. Stesmans, V.V. Afanas’ev, F. Chen, S.A. Campbell, Appl. Phys. Lett. 84, 4574 (2004)

    Article  CAS  Google Scholar 

  18. S. Wright, R.C. Barklie, Mater. Sci. in Semicond. Processing 9, 892 (2006)

    Article  CAS  Google Scholar 

  19. B.H. Lee, L. Kang, R. Nieh, W.-J. Qi, J.C. Lee, Appl. Phys. Lett. 76, 1926 (2000)

    Article  CAS  Google Scholar 

  20. H. Kim, A. Marshall, P.C. McIntyre, K.C. Saraswat, Appl. Phys. Lett. 84, 2064 (2004)

    Article  CAS  Google Scholar 

  21. J.R. Pilbrow, in Transition Ion Electron Paramagnetic Resonance (Clarendon Press Oxford 1990), p. 116

  22. M.M. Abraham, L.A. Boatner, J.O. Ramey, J. Chem. Phys. 83, 2754 (1985)

    Article  CAS  Google Scholar 

  23. R.F.C. Claridge, D.G. McGavin, W.C. Tennant, J. Phys.: Condens. Matter. 7, 9049 (1995)

    Article  CAS  Google Scholar 

  24. C.P. Kumar, N.O. Gopal, T.C. Wang, M.S. Wong, S.C. Ke, J. Phys. Chem. B 110, 5223 (2006)

    Article  CAS  Google Scholar 

  25. Q. Zhao, X. Wang, T. Cai, Appl. Surf. Sci. 225, 7 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Programme for Research in Third Level Institutes and Science Foundation Ireland. One of us (S.W.) thanks Trinity College Dublin for a research studentship. The authors thank Dr. P Hurley for supplying one of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Barklie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, S., Barklie, R.C. EPR characterization of defects in m-HfO2 . J Mater Sci: Mater Electron 18, 743–746 (2007). https://doi.org/10.1007/s10854-007-9119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9119-6

Keywords

Navigation