Skip to main content
Log in

Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanism of liquid–liquid phase separation and factors determining the solid-state microstructure of monotectic alloys are discussed. The effect of the cooling rate on the phase-separated morphology is shown in examples of Al–In, Al–Pb, Ni–Nb–Y and Zr–Gd–Co–Al alloys solidified by different techniques. A remarkable improvement of the microstructure for the Al91Pb9 hypermonotectic alloy cast with TiB2 particles, which catalyze the phase separation, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vogel W (1979) Glasschemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  2. Kelton KF, Greer AL (2010) Nucleation in condensed matter: applications in materials and biology. Elsevier (Pergamon Materials Series), Amsterdam

    Google Scholar 

  3. Cahn JW (1968) Trans Metall Soc AIME 242:166

    CAS  Google Scholar 

  4. Zhao JZ, Ratke L, Feuerbacher B (1998) Model Simul Mater Sci Eng 6:123

    Article  CAS  Google Scholar 

  5. Zhao J, Ratke L, Jia J, Li Q (2002) J Mater Sci Technol 18:197

    Google Scholar 

  6. Greer SC (1978) Acc Chem Res 11:427

    Article  CAS  Google Scholar 

  7. Cahn JW (1969) J Am Chem Soc 52:118

    CAS  Google Scholar 

  8. Perepezko JH, Galaup C, Cooper KP (1982) In: Rindone GE (ed) Materials processing in reduced gravity environment of space. Elsevier, Amsterdam, p 491

    Google Scholar 

  9. Uebber N, Ratke L (1991) Scr Metall Mater 25:1133

    Article  CAS  Google Scholar 

  10. Ratke L, Thieringer WK (1985) Acta Metall 33:1793

    Article  Google Scholar 

  11. Ratke L (1987) J Colloid Interface Sci 119:391

    Article  CAS  Google Scholar 

  12. Wu M, Ludwig A, Ratke L (2003) Metall Mater Trans A 34:3009

    Article  Google Scholar 

  13. Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A (2008) Mater Sci Eng A 495:43

    Article  Google Scholar 

  14. Chatain D, Wynblatt P, de Ruijter M, de Conninck J, Carter C (1999) Acta Mater 47:3049

    Article  CAS  Google Scholar 

  15. Porai-Koshits EA, Averjanov VI (1968) J Non-Cryst Solids 1:29

    Article  CAS  Google Scholar 

  16. Uhlmann DR, Kolbeck AG (1976) Phys Chem Glasses 17:146

    CAS  Google Scholar 

  17. Andrikopoulos KS, Arvanitidis J, Dracopoulos V, Christofilos D, Wagner T, Yannopoulos SN (2011) Appl Phys Lett 99:171911

    Article  Google Scholar 

  18. Kündig AA, Ohnuma M, Ping DH, Ohkubo T, Hono K (2004) Acta Mater 52:2441

    Article  Google Scholar 

  19. Park BJ, Chang HJ, Kim DH, Kim WT, Chattopadhyay K, Abinandanan TA, Bhattacharyya (2006) Phys Rev Lett 96:245503

    Article  Google Scholar 

  20. Mattern N, Kühn U, Gebert A, Gemming T, Zinkevich M, Wendrock H, Schultz L (2005) Scr Mater 53:271

    Article  CAS  Google Scholar 

  21. Han JH, Mattern N, Kim DH, Eckert J (2011) J Alloy Compd 509S:S42

    Article  Google Scholar 

  22. Mattern N, Shariq A, Schwarz B, Vainio U, Eckert J (2012) Acta Mater 60:1946

    Article  CAS  Google Scholar 

  23. Rowlinson SS, Widom B (1982) Molecular theory of capillarity. Clarendon Press, Oxford

    Google Scholar 

  24. Kaban IG, Hoyer W (2008) Phys Rev B 77:125426

    Article  Google Scholar 

  25. Kaban I, Curiotto S, Chatain D, Hoyer W (2010) Acta Mater 58:3406

    Article  CAS  Google Scholar 

  26. Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL (2011) Acta Mater 59:6880

    Article  CAS  Google Scholar 

  27. Moiseev J, Zak H, Palkowski H, Tonn B (2005) Aluminium 81:92

    CAS  Google Scholar 

  28. Ratke L, Brück S, Mathiesen R, Ludwig A, Gruber-Pretzler M, Tonn B, Gzovskyy K, Gránásy L, Tegze G, Ågren J, Hoglund L, Arnberg L, Gust E, Anger G, Lauer M, Garen R, Reifenhäuser B (2007) Trans Indian Inst Metals 60:103

    CAS  Google Scholar 

  29. Turnbull D (1950) J Appl Phys 21:1022

    Article  CAS  Google Scholar 

  30. Greer AL (2010) Scr Mater 62:899

    Article  CAS  Google Scholar 

  31. Kaban I, Köhler M, Hoyer W, Ratke L (2010) High Temp High Press 39:347

    CAS  Google Scholar 

  32. Köhler M, Ratke L, Kaban I, Hoyer W (2011) IOP Conf Ser Mater Sci Eng 27:012005

    Article  Google Scholar 

Download references

Acknowledgements

This study has partly been funded by the German Research Foundation DFG (Contracts No. Ka-3209/1-2, Ra-537/10). The Foundry Research Institute Cracow and the Global Research Laboratory Program of the Korean Ministry of Education, Science and Technology are acknowledged for the support of this study. O. Shuleshova is acknowledged for helpful discussions. B. Korpała, G. Bruzda and A. Tchorz are thanked for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaban, I., Köhler, M., Ratke, L. et al. Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials. J Mater Sci 47, 8360–8366 (2012). https://doi.org/10.1007/s10853-012-6660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6660-3

Keywords

Navigation