Skip to main content
Log in

Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy logic and soft computing: issues, contentions and perspectives. In: Proc. IIZUKA94: 3rd Int. Conf. Fuzzy Logic, Neural Nets and Soft Computing, pp. 1–2 (1994)

  2. United States Department of Defense: [Online]. Available: http://www.defense.gov (2010). Accessed 1 May 2010

  3. Meister, O., Frietsch, N., Ascher, C., Trommer, G.: Adaptive path planning for a VTOL-UAV. In: Position, Location and Navigation Symposium, 2008 IEEE/ION, pp. 1252–1259 (2008)

  4. Moses, A., Rutherford, M., Valavanis, K.: Radar-based detection and identification for miniature air vehicles. In: 2011 IEEE International Conference on Control Applications (CCA), pp. 933–940 (2011)

  5. Hibrid System Laboratory, Berkeley University, Quadrotor and Kinect: [Online]. Available: http://hybrid.eecs.berkeley.edu/ (2012). Accessed 22 January 2012

  6. Lai, J.S., Mejias, L., Ford, J.J.: Airborne vision-based collision-detection system. J. Field Robot. 28(2), 137–157 (2011). [Online]. Available: http://eprints.qut.edu.au/32801/. Accessed 4 August 2010

    Article  MATH  Google Scholar 

  7. Mejias, L., Mondragon, I., Campoy, P.: Omnidirectional bearing-only see-and-avoid for small aerial robots. In: The 5th International Conference on Automation, Robotics and Applications. IEEE, Wellington (2011). [Online]. Available: http://eprints.qut.edu.au/46597/. Accessed 17 October 2011

  8. Mejias, L., McNamara, S., Lai, J.S., Ford, J.J.: Vision-based detection and tracking of aerial targets for UAV collision avoidance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Taipei (2010). [Online]. Available: http://eprints.qut.edu.au/32793/. Accessed 11 December 2010

  9. Shabayek, A.E.R., Demonceaux, C., Morel, O., Fofi, D.: Vision based UAV attitude estimation: progress and insights. J. Intell. Robot. Syst. 65(1–4), 295–308 (2012)

    Article  Google Scholar 

  10. Martinez, C., Mondragon, I., Olivares-Mendez, M., Campoy, P.: On-board and ground visual pose estimation techniques for UAV control. J. Intell. Robot. Syst. 61, 301–320 (2011). doi:10.1007/s10846-010-9505-9

    Article  Google Scholar 

  11. Dusha, D., Mejias, L.: Error analysis and attitude observability of a monocular GPS/visual odometry integrated navigation filter. Int. J. Rob. Res. 31(6), 714–737 (2012). [Online]. Available: http://eprints.qut.edu.au/46549/

    Article  Google Scholar 

  12. Hunt, K., Sbarbaro, D., Zbikowski, R., Gawthrop, P.: Neural networks for control systems: a survey. Automatica 28(6), 1083–1112 (1992). [Online]. Available: http://www.sciencedirect.com/science/article/pii/000510989290053I

    Article  MathSciNet  MATH  Google Scholar 

  13. Precup, R.-E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0166361510001363

    Article  Google Scholar 

  14. Zheng, L.: A practical guide to tune of proportional and integral (PI) like fuzzy controllers. In: IEEE International Conference on Fuzzy Systems, pp. 633–640 (1992)

  15. Malhotra, R., Singh, N., Singh, Y.: Soft computing techniques for process control applications. Int. J. Soft Comput. 2, 32–44 (2011)

    Article  Google Scholar 

  16. Bonissone, P., Khedkar, P., Chen, Y.: Genetic algorithms for automated tuning of fuzzy controllers: a transportation application. In: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 674–680 (1996)

  17. Li, W.: Optimization of a fuzzy controller using neural network. In: Proceedings of the Third IEEE Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, vol. 1, pp. 223–227 (1994)

  18. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  19. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. dissertation, Harvard University, Cambridge, MA (1974)

  20. Bonissone, P.P., Chen, Y.-T., Goebel, K., Khedkar, P.S.: Hybrid soft computing systems: industrial and commercial applications. In Proceedings of the IEEE (1999)

  21. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99, 89–112 (1996)

    Article  Google Scholar 

  22. Belmudes, F., Ernst, D., Wehenkel, L.: Cross-entropy based rare-event simulation for the identification of dangerous events in power systems. In: Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems. PMAPS ’08, pp. 1–7 (2008)

  23. Celeste, F., Dambreville, F., Le Cadre, J.-P.: Optimal path planning using cross-entropy method. In: 2006 9th International Conference on Information Fusion, pp. 1–8 (2006)

  24. Zhang, Y., Ji, C., Malik, W., O’Brien, D., Edwards, D.: Cross-entropy optimisation of multiple-input multiple-output capacity by transmit antenna selection. IET Microwaves Antennas Propag. 1(6), 1131–1136 (2007)

    Article  Google Scholar 

  25. Kobilarov, M.: Cross-entropy randomized motion planning. In: Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA (2011)

  26. Bodur, M.: An adaptive cross-entropytuning of the PID control for robot manipulators. In: Proceedings of the World Congress on Engineering, WCE 2007, pp. 93–98 (2007)

  27. Haber, R.E., del Toro, R.M., Gajate, A.: Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process. Inf. Sci. 180, 2777–2792 (2010)

    Article  Google Scholar 

  28. Bradski, G.: Computer vision face tracking for use in a perceptual user interface. In: IEEE Workshop on Applications of Computer Vision, Princeton, NJ, pp. 214–219 (1998)

  29. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mondragón, I., Olivares-Méndez, M., Campoy, P. Martínez, C., Mejias, L.: Unmanned aerial vehicles uavs attitude, height, motion estimation and control using visual systems. Auton. Robots 29, 17–34 (2010). doi:10.1007/s10514-010-9183-2

    Article  Google Scholar 

  31. Olivares-Mendez, M., Mondragon, I., Campoy, P., Martinez, C.: Fuzzy controller for UAV-landing task using 3d-position visual estimation. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2010)

  32. Olivares-Mendez, M., Mellado, I., Campoy, P., Mondragon, I., Martinez, C.: A visual AGV-urban car using fuzzy control. In: 2011 IEEE International Conference on Automation, Robotics and Applicatios (ICARA) (2011)

  33. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics). Springer, Secaucus (2004)

  34. Botev, Z., Kroese, D.P.: Global likelihood optimization via the cross-entropy method with an application to mixture models. In: Proceedings of the 36th Conference on Winter Simulation, pp. 529–535 (2004)

  35. Robot Operating System (ROS): [Online]. Available: http://ros.org/wiki/gazebo (2012)

  36. Starmac-ROS package. Hybrid Systems Laboratory, UC Berkeley (2012). [Online]. Available: http://www.ros.org/wiki/starmac-ros-pkg

  37. Ar.Drone Parrot (2010). [Online]. Available: http://ardrone.parrot.com

  38. Computer Vision Group-UPM (2012). [Online]. Available: http://www.vision4uav.eu

  39. Motion Capture System from VICON (2012). [Online]. Available: http://www.vicon.com

  40. Computer Vision Group-UPM. See and avoid fuzzy controller scaling factors optimized using cross-entropy (2012). [Online]. Available: http://vision4uav.eu/?q=researchline/SeeAndAvoidCE_SF

  41. Youtube Channel Computer Vision Group-UPM (2012). [Online]. Available: http://www.youtube.com/colibriprojectUAV

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Olivares-Mendez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivares-Mendez, M.A., Mejias, L., Campoy, P. et al. Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems. J Intell Robot Syst 69, 189–205 (2013). https://doi.org/10.1007/s10846-012-9791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9791-5

Keywords

Navigation